An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. Microstructure
3.3. Dielectric Properties
3.4. DSC Measurements
3.5. Raman Scattering
3.6. Ferroelectric Measurements
3.7. Electrocaloric Properties
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daniels, J.E.; Jo, W.; Rödel, J.; Jones, J.L. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93% (Bi0.5Na0.5) TiO3-7% BaTiO3 piezoelectric ceramic. Appl. Phys. Lett. 2009, 95, 032904. [Google Scholar] [CrossRef] [Green Version]
- Tinte, S.; Stachiotti, M.G. Surface effects and ferroelectric phase transitions in BaTiO3 ultrathin films. Phys. Rev. B 2001, 64, 235403. [Google Scholar] [CrossRef]
- Hao, J.H.; Gao, J.; Wang, Z.; Yu, D.P. Interface structure and phase of epitaxial SrTiO3 (100) thin films grown directly on silicon. Appl. Phys. Lett. 2005, 87, 131908. [Google Scholar] [CrossRef] [Green Version]
- Ganeev, R.A.; Suzuki, M.; Baba, M.; Ichihara, M.; Kuroda, H. Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles. J. Opt. Soc. Am. B 2008, 25, 325–333. [Google Scholar] [CrossRef]
- Scott, J.F. Ferroelectric Memories; Springer Series in Advanced Microelectronics; Springer: New York, NY, USA, 2000. [Google Scholar]
- Zhu, X.N.; Zhang, W.; Chen, X.M. Enhanced dielectric and ferroelectric characteristics in Ca-modified BaTiO3 ceramics. AIP Advances 2013, 3, 082125. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Wu, J. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2020, 2, 1163–1190. [Google Scholar] [CrossRef]
- Tsur, Y.; Dunbar, T.D.; Randall, C.A. Crystal and defect chemistry of rare-earth cations in BaTiO3. J. Electroceram. 2001, 7, 25–34. [Google Scholar] [CrossRef]
- Jun, B.E.; Kim, E.J.; Kim, Y.S.; Kim, J.S.; Choi, B.C.; Moon, B.K.; Jeong, J.H. Dielectric and ferroelectric properties of EuxBa1−xTiO3 fine ceramics. J. Korean Phys. Soc. 2008, 53, 2659–2663. [Google Scholar] [CrossRef]
- Sitko, D. Dielectric spectroscopy study of barium titanate ceramics doped with europium ions. Phase Trans. 2014, 87, 1002–1010. [Google Scholar] [CrossRef]
- Sitko, D.; Garbarz-Glos, B.; Piekarczyk, W.; Śmiga, W.; Antonova, M. The effects of the additive of Eu ions on elastic and electric properties of BaTiO3 ceramics. Integr. Ferroelectr. 2016, 173, 31–37. [Google Scholar] [CrossRef]
- Jankowska-Sumara, I.; Sitko, D.; Podgórna, M.; Pilch, M. The electromechanical behaviour of europium doped BaTiO3. J. Alloys Compd. 2017, 724, 703–710. [Google Scholar] [CrossRef]
- Patel, D.K.; Vishwanadh, B.; Sudarsan, V.; Vatsa, R.K.; Kulshreshtha, S.K. Hexagonal BaTiO3:Eu nanoparticles: A kinetically stable phase prepared at low temperatures. J. Am. Ceram. Soc. 2011, 94, 482–487. [Google Scholar] [CrossRef]
- Gwizd, P.; Sitko, D.; Jankowska-Sumara, I.; Krupska-Klimczak, M. The electrocaloric effect in BaTiO3:Eu ceramics determined by an indirect method. Phase Transit. 2021, 94, 192–198. [Google Scholar] [CrossRef]
- Miyaura, A.; Kawaguchi, T.; Hagiwara, M.; Fujihara, S. Controlled 90° domain wall motion in BaTiO3 piezoelectric ce-ramics modified with acceptor ions localized near grain boundaries. SN Appl. Sci. 2019, 1, 286. [Google Scholar] [CrossRef] [Green Version]
- Abrams, H. Grain size measurements by the intercept method. Metallography 1971, 4, 59–78. [Google Scholar] [CrossRef]
- Kalyani, A.K.; Brajesh, K.; Senyshyn, A.; Ranjan, R. Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. Phys. Lett. 2014, 104, 252906. [Google Scholar] [CrossRef]
- Markiewicz, E.; Bujakiewicz-Koronska, R.; Majda, D.; Vasylechko, L.; Kalvane, A.; Matczak, M. Effect of cobalt doping on the dielectric response of Ba0.95Pb0.05TiO3 ceramics. J. Electroceram. 2014, 32, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Zhang, J.; Wu, Y.; Wang, C.; Koval, V.; Shi, B.; Ye, H.; McKinnon, R.; Viola, G.; Yan, H. Unfolding grain size effects in barium titanate ferroelectric ceramics. Sci. Rep. 2015, 5, 9953. [Google Scholar] [CrossRef] [Green Version]
- Hassan, R.; Hassan, J.; Hashim, M.; Paiman, S.; Azis, R.S. Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying. J. Adv. Ceram. 2014, 3, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Buscaglia, V.; Viviani, M.; Buscaglia, M.T.; Mitoseriu, L.; Testino, A.; Nygren, M.; Johnsson, M.; Nanni, P. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 2004, 70, 024107. [Google Scholar] [CrossRef]
- Sitko, D.; Bak, W.; Garbarz-Glos, B.; Kulinska, A.; Antonova, M.; Kalvane, A.; Smiga, W. Study of the Dielectric Properties of Europium Doped Barium Titanate Ceramics by an Impedance Spectroscopy. Ferroelectrics 2015, 485, 58–62. [Google Scholar] [CrossRef]
- Hwang, J.H.; Han, Y.H. Dielectric Properties of Erbium Doped Barium Titanate. Jpn. J. Appl. Phys. 2001, 40, 676–679. [Google Scholar] [CrossRef]
- Qinghu, G.; Lintao, H.; Fei, L.; Fangquan, X.; Pengbin, W.; Hua, H.; Huajun, S.; Hanxing, L.; Shujun, Z. Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J. Am. Ceram. Soc. 2019, 102, 7428–7435. [Google Scholar]
- DiDomenico, M.; Wemple, S.H.; Porto, S.P.S.; Bauman, R.P. Raman spectrum of single-domain BaTiO3. Phys. Rev. Lett. 1968, 174, 522–530. [Google Scholar] [CrossRef]
- Schutz, D.; Deluca, M.; Krauss, W.; Feteira, A.; Jackson, T.; Reichmann, K. Lone-pair induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate. Adv. Funct. Mater. 2012, 22, 2285–2294. [Google Scholar] [CrossRef] [Green Version]
- Veerapandiyana, V.K.; Khosravi, S.; Canuc, G.; Feteirad, A.; Buscagliac, V.; Reichmannb, K.; Deluca, M. B-site vacancy induced Raman scattering in BaTiO3-based ferroelectric ceramics. J. Eur. Ceram. Soc. 2020, 40, 4684–4688. [Google Scholar] [CrossRef]
- Arlt, G.; Hennings, D.; With, G.D. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Kutnjak, Z.; Rozic, B.; Pirc, R. Electrocaloric effect: Theory, measurements, and applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons Inc.: New York, NY, USA, 2015; pp. 1–19. [Google Scholar]
- Wieczorek, K.; Ziębinska, A.; Ujma, Z.; Szot, K.; Górny, M.; Franke, I.; Koperski, J.; Soszyński, A.; Roleder, K. Electrostrictive and Piezoelectric Effect in BaTiO3 and PbZrO3. Ferroelectrics 2006, 336, 61–67. [Google Scholar] [CrossRef]
- Mischenko, A.S.; Zhang, Q.; Scott, F.; Whatmore, R.; Mathur, N.D. Gigant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 2006, 311, 5765. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, B.A.; Payne, D.A. The effects of microstructure on the electrocaloric properties of Pb(Zr,Sn,Ti)O3 ceramics. Ferroelectrics 1981, 37, 603–606. [Google Scholar] [CrossRef]
Sample | TC (K) | ΔE (J/g) | TO-T (K) | ΔE (J/g) |
---|---|---|---|---|
BTO | 404 | 2.797 | 290 | 1.14 |
BTE0.1 | 403 | 1.534 | 298 | 0.75 |
BTE1 | 402 | 1.454 | 299 | 0.342 |
BTE2 | 401 | 1.174 | 301 | 0.132 |
BTE3 | 395 | 0.539 | 302 | 0.269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupska-Klimczak, M.; Gwizd, P.; Jankowska-Sumara, I.; Sitko, D.; Jeleń, P. An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ions. Materials 2022, 15, 5363. https://doi.org/10.3390/ma15155363
Krupska-Klimczak M, Gwizd P, Jankowska-Sumara I, Sitko D, Jeleń P. An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ions. Materials. 2022; 15(15):5363. https://doi.org/10.3390/ma15155363
Chicago/Turabian StyleKrupska-Klimczak, Magdalena, Przemyslaw Gwizd, Irena Jankowska-Sumara, Dorota Sitko, and Piotr Jeleń. 2022. "An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ions" Materials 15, no. 15: 5363. https://doi.org/10.3390/ma15155363
APA StyleKrupska-Klimczak, M., Gwizd, P., Jankowska-Sumara, I., Sitko, D., & Jeleń, P. (2022). An Overview of Some Nonpiezoelectric Properties of BaTiO3 Ceramics Doped by Eu Ions. Materials, 15(15), 5363. https://doi.org/10.3390/ma15155363