Numerical Assessment of Damage Parameters for a Hard Interface Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Hard Imperfect Interface Model for Micro-Cracked Adhesive Joints
2.2. Micromechanical Homogenization Schemes for a Microcracked Adhesive
2.2.1. Kachanov-Sevostianov Scheme
2.2.2. Welemane-Goidescu Scheme
2.2.3. Pan-Weng Scheme
2.3. A Description for the Micro-Cracking Damage Evolution
2.4. Numerical Assessment Procedure
3. Results
3.1. Numerical Assessment in the Bulk Configuration
3.2. Numerical Assessment in the Joint Configuration
Influence of the Adhesive Type
4. Discussion
5. Conclusions
- They could represent an intrinsic material property as the performed numerical estimation on the bulk configuration gives the same values of parameters regardless of the homogenization scheme used.
- They could depend on the adhesive configuration in agreement with the fact that the mechanical behaviour of an adhesive in bulk configuration is different from that of the same adhesive in joint form. In fact, the estimated parameters in the joint configuration are different from that found in the bulk one.
- In the joint configuration, parameters could depend on the adopted homogenization scheme.
- They could depend on the adhesive material properties and on the test configuration, however further investigation is needed to elucidate this point.
- the dependency of the model parameters on the considered microstructure (i.e., the shape of the porosity), particularly the influence of the microstructural parameter could be investigated;
- the dependency of the model parameters on the type of structural adhesive, to this aim several adhesive materials could be compared.
- In the above case, the possible dependency on the test configuration must be eliminated by using the same configuration for all different adhesives.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goland, M.; Reissner, E. The stresses in cemented joints. J. Appl. Mech. 1944, 11, A17–A27. [Google Scholar] [CrossRef]
- Gilibert, Y.; Rigolot, A. Asymptotic analysis of double adhesive bonded joints loaded in shear tension. J. Méc. Appl. 1979, 3, 341–372. [Google Scholar]
- Benveniste, Y. The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 1985, 4, 197–208. [Google Scholar] [CrossRef]
- Hashin, Z. Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 1990, 8, 333–348. [Google Scholar] [CrossRef]
- Hashin, Z. Thermoelastic properties of particulate composites with imperfect interface. J. Mech. Phys. Solid 1991, 39, 745–762. [Google Scholar] [CrossRef]
- Hashin, Z. Extremum principles for elastic heterogenous media with imperfect interfaces and their application to bounding of effective moduli. J. Mech. Phys. Solid 1992, 40, 767–781. [Google Scholar] [CrossRef]
- Needleman, A. Micromechanical modelling of interfacial decohesion. Ultramicroscopy 1992, 40, 203–214. [Google Scholar] [CrossRef]
- Bövik, P. On the modelling of thin interface layers in elastic and acoustic scattering problems. Quart. J. Mech. Appl. Math. 1994, 47, 17–42. [Google Scholar] [CrossRef]
- Benveniste, Y.; Miloh, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 2001, 33, 309–323. [Google Scholar] [CrossRef]
- Frémond, M. Adhérence des solides. J. Méc. Théorique Appl. 1987, 6, 383–407. [Google Scholar]
- Bonetti, E.; Bonfanti, G.; Lebon, F.; Rizzoni, R. A model of imperfect interface with damage. Meccanica 2017, 52, 1911–1922. [Google Scholar] [CrossRef]
- Raous, M.; Cangémi, L.; Cocou, M. A consistent model coupling adhesion, friction and unilateral contact. Comput. Methods Appl. Mech. Eng. 1999, 177, 383–399. [Google Scholar] [CrossRef]
- Del Piero, G.; Raous, M. A unified model for adhesive interfaces with damage, viscosity, and friction. Eur. J. Mech. A Solid 2010, 29, 496–507. [Google Scholar] [CrossRef] [Green Version]
- Chaboche, J.-L.; Feyel, F.; Monerie, Y. Interface debonding model: A viscous regularization with a limited rate dependency. Int. J. Solid Struct. 2001, 38, 3127–3160. [Google Scholar] [CrossRef] [Green Version]
- Corigliano, A.; Mariani, S. Simulation of damage in composites by means of interface models: Parameter identification. Comp. Sci. Technol. 2001, 61, 2299–2315. [Google Scholar] [CrossRef]
- Raffa, M.L.; Lebon, F.; Rizzoni, R. A micromechanical model of a hard interface with micro-cracking damage. Int. J. Mech. Sci. 2022, 216, 106974. [Google Scholar] [CrossRef]
- Rizzoni, R.; Dumont, S.; Lebon, F.; Sacco, S. Higher order model for soft and hard interfaces. Int. J. Solid Struct. 2014, 51, 4137–4148. [Google Scholar] [CrossRef]
- Eshelby, J.D. Book Review: Progress in solid mechanics. Vol. 1. Edited by IN SNEDDON and R. HILL, North-Holland Publishing Company, Amsterdam, 1960, 448 pp., 100s. J. Mech. Phys. Solid 1961, 9, 67. [Google Scholar] [CrossRef]
- Budiansky, B.; O’Connell, R.J. Elastic moduli of a cracked solid. Int. J. Solid Struct. 1976, 12, 81–97. [Google Scholar] [CrossRef]
- Andrieux, S.; Bamberger, Y.; Marigo, J.J. Un modèle de matériau microfissuré pour les bétons et les roches. J. Méc. Théor. Appl. 1986, 5, 471–513. [Google Scholar]
- Kachanov, M. Elastic solids with many cracks and related problems. Adv. Appl. Mech. 1994, 30, 259–445. [Google Scholar]
- Mauge, C.; Kachanov, M. Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks. J. Mech. Phys. Solid 1994, 42, 561–584. [Google Scholar] [CrossRef]
- Pan, H.H.; Weng, G.J. Elastic moduli of heterogeneous solids with ellipsoidal inclusions and elliptic cracks. Acta Mech. 1995, 110, 73–94. [Google Scholar] [CrossRef]
- Bruno, G.; Kachanov, M.; Sevostianov, I.; Shyam, A. Micromechanical modelling of non-linear stress-strain behavior of polycrystalline microcracked materials under tension. Acta Mater. 2019, 164, 50–59. [Google Scholar] [CrossRef]
- Sevostianov, I.; Kachanov, M. On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mech. Mat. 2014, 69, 93–105. [Google Scholar] [CrossRef]
- Maurel-Pantel, A.; Lamberti, M.; Raffa, M.L.; Suarez, C.; Ascione, F.; Lebon, F. Modelling of a GFRP adhesive connection by an imperfect soft interface model with initial damage. Comp. Struct. 2020, 239, 112034. [Google Scholar] [CrossRef]
- Dumont, V.; Badulescu, C.; Adrien, J.; Carrere, N.; Thévenet, D.; Maire, E. Experimental investigation of porosities evolution in a bonded assembly by means of X-ray tomography. J. Adh. 2021, 97, 528–552. [Google Scholar] [CrossRef]
- Kachanov, M.; Sevostianov, I. Micromechanics of Materials, with Applications; Springer: Cham, Switzerland, 2018; Volume 249. [Google Scholar]
- Kachanov, M.; Sevostianov, I. On quantitative characterization of microstructures and effective properties. Int. J. Solid Struct. 2005, 42, 309–336. [Google Scholar] [CrossRef]
- Welemane, H.; Cormery, F. Some remarks on the damage unilateral effect modelling for microcracked materials. Int. J. Damage Mech. 2002, 11, 65–86. [Google Scholar] [CrossRef]
- Welemane, H.; Goidescu, C. Isotropic brittle damage and unilateral effect. Compte Rendu Méc. 2010, 338, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Goidescu, C.; Welemane, H.; Kondo, D.; Gruescu, C. Microcracks closure effects in initially orthotropic materials. Eur. J. Mech. A Solid 2013, 37, 172–184. [Google Scholar] [CrossRef]
- Goidescu, C.; Welemane, H.; Pantalé, O.; Karama, M.; Kondo, D. Anisotropic unilateral damage with initial orthotropy: A micromechanics-based approach. Int. J. Damage Mech. 2015, 24, 313–337. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metal. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Murakami, S.; Sekiguchi, Y.; Sato, C.; Yokoi, E.; Furusawa, T. Strength of cylindrical butt joints bonded with epoxy adhesives under combined static or high-rate loading. Int. J. Adh. Adhes. 2016, 67, 86–93. [Google Scholar] [CrossRef]
- Kosmann, J.; Klapp, O.; Holzhüter, D.; Schollerer, M.J.; Fiedler, A.; Nagel, C.; Hühne, C. Measurement of epoxy film adhesive properties in torsion and tension using tubular butt joints. Int. J. Adh. Adhes. 2018, 83, 50–58. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer, Version: 4.4. Available online: https://automeris.io/WebPlotDigitizer (accessed on 4 July 2022).
- Wolfram Research, Inc. Mathematica, Version 12.1; Wolfram Research, Inc.: Champaign, IL, USA, 2020. [Google Scholar]
- Raffa, M.L.; Rizzoni, R.; Lebon, F. A model of damage for brittle and ductile adhesives in glued butt joints. Technologies 2021, 9, 19. [Google Scholar] [CrossRef]
- Sevostianov, I.; Kachanov, M. Effective properties of heterogeneous materials: Proper application of the non-interaction and the “dilute limit” approximations. Int. J. Eng. Sci. 2012, 58, 124–128. [Google Scholar] [CrossRef]
- Serpilli, M.; Rizzoni, R.; Lebon, F.; Dumont, S. An asymptotic derivation of a general imperfect interface law for linear multiphysics composites. Int. J. Solids Struct. 2019, 180–181, 97–107. [Google Scholar] [CrossRef] [Green Version]
Parameter | Epoxy-Based Adhesive XA7416 [35] | Epoxy-Based Adhesive Henkel Hysol EA9695 [36] |
---|---|---|
Adhesive thickness [mm] | ||
Loading rate [MPa/s] | × | × |
Shear modulus [MPa] |
Configuration/Homog. Scheme/Adhesive Type | Damage Threshold [/] | Damage Viscosity [/] |
---|---|---|
Bulk/KS, WG and PW/XA7416 | 230 | |
Joint/KS and WG/XA7416 | ||
Joint/PW/XA7416 | ||
Joint/KS/EA9695 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffa, M.L.; Rizzoni, R.; Lebon, F. Numerical Assessment of Damage Parameters for a Hard Interface Model. Materials 2022, 15, 5370. https://doi.org/10.3390/ma15155370
Raffa ML, Rizzoni R, Lebon F. Numerical Assessment of Damage Parameters for a Hard Interface Model. Materials. 2022; 15(15):5370. https://doi.org/10.3390/ma15155370
Chicago/Turabian StyleRaffa, Maria Letizia, Raffaella Rizzoni, and Frédéric Lebon. 2022. "Numerical Assessment of Damage Parameters for a Hard Interface Model" Materials 15, no. 15: 5370. https://doi.org/10.3390/ma15155370
APA StyleRaffa, M. L., Rizzoni, R., & Lebon, F. (2022). Numerical Assessment of Damage Parameters for a Hard Interface Model. Materials, 15(15), 5370. https://doi.org/10.3390/ma15155370