Electrochemical Mechanism of Molten Salt Electrolysis from TiO2 to Titanium
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Raw Materials and Cathode Precursor Preparation
2.2. Electro-Deoxidation Process
2.3. Electrochemical Test
2.4. Characterization
3. Results and Discussion
3.1. Calculation of the Theoretical Decomposition Potentials
3.2. Electro-Deoxidization of the Cathode Precursor
Possible Reactions | ΔGθ1073 K (kJ/mol) | No. |
---|---|---|
Ca2+ + O2− = CaO | −1045.43 | (1) |
CaO + TiO2 = CaO·TiO2 | −86.94 | (2) |
Ti + CaTiO3 = 2TiO + CaO | −21.29 | (3) |
3.3. Electro-Deoxidation Thermodynamics of Titanium Oxides in Molten Salt Systems
3.4. Analysis of Electrochemical Deoxidation of TiO2 in NaCl-CaCl2 System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sibum, H.; Güther, V.; Roidl, O.; Habashi, F.; Wolf, H.U.; Siemers, C. Titanium, Titanium Alloys, and Titanium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Luca, D.; Earar, K.; Antoniac, I. Tribological tests and SEM analysis for titanium oxide layers. Key Eng. Mater. 2014, 614, 74–79. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Strugaru, S.I.; Barca, A.; Biniuc, C.; Iulia, C.C. Influence of time on thermal oxidation of CP-Ti grade Ⅱ at 850 °C. Key Eng. Mater. 2014, 614, 35–40. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, D.H. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev. 2014, 43, 3215–3228. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, R.B. Some recent innovations in the Kroll process of titanium sponge production. Bull. Mater. Sci. 1993, 16, 433–451. [Google Scholar] [CrossRef] [Green Version]
- Nagesh, C.R.V.S.; Rao, C.S.; Ballal, N.B. Mechanism of titanium sponge formation in the Kroll reduction reactor. Metall. Mater. Trans. B 2004, 35, 65–74. [Google Scholar] [CrossRef]
- Ono, K.; Suzuki, R.O. A new concept for producing Ti sponge: Calciothermic reduction. JOM 2002, 54, 59–61. [Google Scholar] [CrossRef]
- Suzuki, R.O.; Ono, K.; Teranuma, K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall. Mater. Trans. B 2003, 34, 287–295. [Google Scholar] [CrossRef]
- Chen, G.Z.; Fray, D.; Farthing, T. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 2000, 407, 361–364. [Google Scholar] [CrossRef]
- Abdelkader, A.M.; Kilby, K.T.; Cox, A.; Fray, D.J. DC voltammetry of electro-deoxidation of solid oxides. Chem. Rev. 2013, 113, 2863–2886. [Google Scholar] [CrossRef]
- Ma, M.; Wang, D.H.; Wang, W.G.; Hu, X.H.; Jin, X.B.; Chen, G.Z. Extraction of titanium from different titania precursors by the FFC Cambridge process. J. Alloy. Compd. 2006, 420, 37–45. [Google Scholar] [CrossRef]
- Ma, T.X.; Luo, X.Y.; Yang, Y.; Hu, M.L.; Wen, L.Y.; Zhang, S.F.; Hu, L.W. Reducing Carbon Contamination by Controlling CO32− Formation During Electrochemical Reduction of TiO2. Metall. Mater. Trans. B 2021, 52, 1061–1070. [Google Scholar] [CrossRef]
- Chen, G.Z.; Gordo, E.; Fray, D.J. Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B 2004, 35, 223–233. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, D.H. Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Met. 2016, 35, 581–590. [Google Scholar] [CrossRef]
- Li, H.; Jia, L.; Liang, J.L.; Yan, H.Y.; Cai, Z.Y.; Reddy, R.G. Study on the direct electrochemical reduction of Fe2O3 in NaCl-CaCl2 melt. Int. J. Electrochem. Sci. 2019, 14, 11267–11278. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.Y.; Ma, T.X.; Wen, L.Y.; Hu, L.W.; Hu, M.L. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process. J. Alloy. Compd. 2021, 864, 158717. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.Y.; Ma, T.X.; Hu, L.W.; Wen, L.Y.; Hu, M.L. Formation process of CoCrFeNi high entropy alloy via electro-deoxidization of metal oxides in molten salt. Rare Metal Mat. Eng. 2021, 50, 3116–3124. [Google Scholar]
- Jiao, H.; Wang, M.; Tu, J.; Jiao, S. Production of AlCrNbTaTi high entropy alloy via electro-deoxidation of metal oxides. J. Electrochem. Soc. 2018, 165, D574–D579. [Google Scholar] [CrossRef]
- Sure, J.; Vishnu, D.S.M.; Schwandt, C. Electrochemical conversion of oxide spinels into high-entropy alloy. J. Alloy. Compd. 2019, 776, 133–141. [Google Scholar] [CrossRef]
- Sure, J.; Vishnu, D.S.M.; Kim, H.K.; Schwandt, C. Facile electrochemical synthesis of nanoscale (TiNbTaZrHf)C high-entropy carbide powder. Angew. Chem. Int. Ed. 2020, 132, 11928–11933. [Google Scholar] [CrossRef]
- Freidina, E.B.; Fray, D.J. Study of the ternary system CaCl2–NaCl–CaO by DSC. Thermochim. Acta 2000, 356, 97–100. [Google Scholar] [CrossRef]
- Lair, D.C.V.; Cassir, M. CO2 electrochemical reduction into CO or C in molten carbonates: A thermodynamic point of view. Electrochim. Acta 2015, 160, 74–81. [Google Scholar] [CrossRef]
- Weng, W.; Wang, M.Y.; Gong, X.Z.; Wang, Z.; Wang, D.; Guo, Z.C. Electrochemical reduction behavior of soluble CaTiO3 in Na3AlF6-AlF3 melt for the preparation of metal titanium. J. Electrochem. Soc. 2017, 164, D551–D557. [Google Scholar] [CrossRef]
- Schwandt, C.; Alexander, D.; Fray, D.J. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control. Electrochim. Acta 2009, 54, 3819–3829. [Google Scholar] [CrossRef]
- Suzuki, R.O. Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2. J. Phys. Chem. Solids 2005, 66, 461–465. [Google Scholar] [CrossRef]
- Weng, W.; Wang, M.; Gong, X.; Wang, Z.; Guo, Z. Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis. Chin. J. Chem. Eng. 2016, 24, 671–676. [Google Scholar] [CrossRef]
- Hu, Y.J.; Wang, X.; Xiao, J.S.; Hou, J.G.; Jiao, S.Q.; Zhu, H.M. Electrochemical behavior of silicon (IV) ion in BaF2-CaF2-SiO2 melts at 1573 K. J. Electrochem. Soc. 2013, 160, D81–D84. [Google Scholar] [CrossRef]
- Nicholson, R.S.; Shain, I. Theory of stationary electrode polarography. single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 1964, 36, 706–723. [Google Scholar] [CrossRef]
Reactions | ΔGθ1073 K (kJ/mol) | E (V) | No. |
---|---|---|---|
8TiO2 + C = 2Ti4O7 + CO2 (g) | 32.82 | −0.34 | (4) |
4TiO2 + C = 2Ti2O3 + CO2 (g) | 39.57 | −0.41 | (5) |
2TiO2 + C = 2TiO + CO2 (g) | 56.09 | −0.58 | (6) |
TiO2 + C = Ti + CO2 (g) | 353.86 | −0.92 | (7) |
Reactions | ΔGθ1073 K (kJ/mol) | E (V) | No. |
---|---|---|---|
2Ti4O7 + C = 4Ti2O3 + CO2 (g) | 46.31 | −0.48 | (8) |
Ti4O7 + 1.5C = 4TiO + 1.5CO2 (g) | 95.76 | −0.99 | (9) |
Ti4O7 + 3.5C = 4Ti + 3.5CO2 (g) | 337.44 | −3.50 | (10) |
2Ti2O3 + C = 4TiO + CO2 (g) | 72.60 | −0.75 | (11) |
Ti2O3 + 1.5C = 2Ti + 1.5CO2 (g) | 314.29 | −1.09 | (12) |
2TiO + C = 2Ti + CO2 (g) | 241.68 | −1.25 | (13) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Zhao, H.; Bi, S.; Ju, Z.; Yang, Z.; Yang, Y.; Li, H.; Liang, J. Electrochemical Mechanism of Molten Salt Electrolysis from TiO2 to Titanium. Materials 2022, 15, 3956. https://doi.org/10.3390/ma15113956
Meng X, Zhao H, Bi S, Ju Z, Yang Z, Yang Y, Li H, Liang J. Electrochemical Mechanism of Molten Salt Electrolysis from TiO2 to Titanium. Materials. 2022; 15(11):3956. https://doi.org/10.3390/ma15113956
Chicago/Turabian StyleMeng, Xianghai, Hongmei Zhao, Sheng Bi, Zilai Ju, Zhenming Yang, Yu Yang, Hui Li, and Jinglong Liang. 2022. "Electrochemical Mechanism of Molten Salt Electrolysis from TiO2 to Titanium" Materials 15, no. 11: 3956. https://doi.org/10.3390/ma15113956
APA StyleMeng, X., Zhao, H., Bi, S., Ju, Z., Yang, Z., Yang, Y., Li, H., & Liang, J. (2022). Electrochemical Mechanism of Molten Salt Electrolysis from TiO2 to Titanium. Materials, 15(11), 3956. https://doi.org/10.3390/ma15113956