Structural Characterization of Al0.37In0.63N/AlN/p-Si (111) Heterojunctions Grown by RF Sputtering for Solar Cell Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alizadeh, M.; Ganesh, V.; Pandikumar, A.; Goh, B.T.; Azianty, S.; Huang, N.M.; Rahman, S.A. Photoelectrochemical behavior of AlxIn1−xN thin films grown by plasma-assisted dual source reactive evaporation. J. Alloys Compd. 2016, 670, 229–238. [Google Scholar] [CrossRef]
- Saidi, I.; Mejri, H.; Baira, M.; Maaref, H. Electronic and transport properties of AlInN/AlN/GaN high electron mobility transistors. Superlattices Microstruct. 2015, 84, 113–125. [Google Scholar] [CrossRef]
- Berger, C.; Dadgar, A.; Bläsing, J.; Krost, A. In-situ growth monitoring of AlInN/AlGaN distributed bragg reflectors for the UV-spectral range. J. Cryst. Growth 2013, 370, 87–91. [Google Scholar] [CrossRef]
- Yamamoto, A.; Islam, M.R.; Kang, T.T.; Hashimoto, A. Recent advances in InN-based solar cells: Status and challenges in InGaN and InAlN solar cells. Phys. Status Solidi C 2010, 7, 1309–1316. [Google Scholar] [CrossRef]
- Gonschorek, M.; Carlin, J.-F.; Feltin, E.; Py, M.; Grandjean, N. High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures. Appl. Phys. Lett. 2006, 89, 062106. [Google Scholar] [CrossRef]
- Deibuk, V.G. Thermodynamic Stability and Redistribution of Charges in Ternary AlGaN, InGaN, and InAlN Alloys. Semiconductors 2005, 39, 623. [Google Scholar] [CrossRef]
- Ferhat, M.; Bechstedt, F. First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties. Phys. Rev. B 2002, 65, 075213. [Google Scholar] [CrossRef]
- Kim-Chauveau, H.; de Mierry, P.; Chauveau, J.-M.; Duboz, J.-Y. The influence of various MOCVD parameters on the growth of Al1−xInxN ternary alloy on GaN templates. J. Cryst. Growth 2011, 316, 30–36. [Google Scholar] [CrossRef]
- Neumayer, D.A.; Ekerdt, J.G. Growth of Group III Nitrides. A Review of Precursors and Techniques. Chem. Mater. 1996, 8, 9–25. [Google Scholar] [CrossRef]
- Hums, C.; Bläsing, J.; Dadgar, A.; Diez, A.; Hempel, T.; Christen, J.; Krost, A.; Lorenz, K.; Alves, E. Metal-organic vapor phase epitaxy and properties of AlInN in the whole compositional range. Appl. Phys. Lett. 2007, 90, 022105. [Google Scholar] [CrossRef]
- Lobanova, A.V.; Yakovlev, E.V.; Talalaev, R.A.; Thapa, S.B.; Scholz, F. Growth conditions and surface morphology of AlN MOVPE. J. Cryst. Growth 2008, 310, 4935–4938. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. Threading dislocations in heteroepitaxial AlN layer grown by MOVPE on SiC (0001) substrate. J. Cryst. Growth 2007, 298, 310–315. [Google Scholar] [CrossRef]
- Kamimura, J.; Kouno, T.; Ishizawa, S.; Kikuchi, A.; Kishino, K. Growth of high-In-content InAlN nanocolumns on Si (111) by RF-plasma-assisted molecular-beam epitaxy. J. Cryst. Growth 2007, 300, 160–163. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Tian, J.; Yen, T.; Lin, P.; Chen, J.; Hsiao, C.; Chang, L. Effect of Growth Temperature on Structural Quality of In-Rich InxAl1-xN Alloys on Si (111) Substrate by RF-MOMBE. Int. Sch. Res. Not. 2014, 2014, 980206. [Google Scholar] [CrossRef]
- Karmann, S.; Schenk, H.P.; Kaiser, U.; Fissel, A.; Richter, W. Growth of columnar aluminum nitride layers on Si(111) by molecular beam epitaxy. Mater. Sci. Eng. B 1997, 50, 228–232. [Google Scholar] [CrossRef]
- Koblmueller, G.; Averbeck, R.; Geelhaar, L.; Riechert, H.; Hösler, W.; Pongratz, P. Growth diagram and morphologies of AlN thin films grown by molecular beam epitaxy. J. Appl. Phys. 2003, 93, 9591–9596. [Google Scholar] [CrossRef]
- Liu, H.F.; Dolmanan, S.B.; Tripathy, S.; Dalapati, G.K.; Tan, C.C.; Chi, D.Z. Effects of AlN thickness on structural and transport properties of In-rich n-AlInN/AlN/p-Si(0 0 1) heterojunctions grown by magnetron sputtering. J. Phys. D Appl. Phys. 2013, 46, 095106. [Google Scholar] [CrossRef]
- Afzal, N.; Devarajan, M.; Ibrahim, K. Influence of substrate temperature on the growth and properties of reactively sputtered In-rich InAlN films. J. Mater. Sci. Mater. Electron. 2016, 27, 4281–4289. [Google Scholar] [CrossRef]
- Núñez-Cascajero, A.; Monteagudo-Lerma, L.; Valdueza-Felip, S.; Navío, C.; Monroy, E.; González-Herráez, M.; Naranjo, F.B. Study of high In-content AlInN deposition on p-Si(111) by RF-sputtering. Jpn. J. Appl. Phys. 2016. [Google Scholar] [CrossRef]
- Zhang, J.X.; Cheng, H.; Chen, Y.Z.; Uddin, A.; Yuan, S.; Geng, S.J.; Zhang, S. Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering. Surf. Coat. Technol. 2005, 198, 68–73. [Google Scholar] [CrossRef]
- Liu, H.F.; Tan, C.C.; Dalapati, G.K.; Chi, D.Z. Magnetron-sputter deposition of high-indium-content n-AlInN thin film on p-Si(001) substrate for photovoltaic applications. J. Appl. Phys. 2012, 112, 063114. [Google Scholar] [CrossRef]
- Núñez-Cascajero, A.; Valdueza-Felip, S.; Blasco, R.; de la Mata, M.; Molina, S.I.; González-Herráez, M.; Monroy, E.; Naranjo, F.B. Quality improvement of AlInN/p-Si heterojunctions with an AlN buffer layer deposited by RF-sputtering. J. Alloys Compd. 2018, 769, 824–830. [Google Scholar] [CrossRef]
- Yeh, T.-S.; Wu, J.-M.; Lan, W.-H. The effect of AlN buffer layer on properties of AlxIn1−xN films on glass substrates. Thin Solid Films 2009, 517, 3204–3207. [Google Scholar] [CrossRef]
- Blasco, R.; Naranjo, F.B.; Valdueza-Felip, S. Design of AlInN on silicon heterojunctions grown by sputtering for solar devices. Curr. Appl. Phys. 2020, 20, 1244–1252. [Google Scholar] [CrossRef]
- Stemmer, J.; Fedler, F.; Klausing, H.; Mistele, D.; Rotter, T.; Semchinova, O.; Aderhold, J.; Sanchez, A.M.; Pacheco, F.J.; Molina, S.I.; et al. High temperature AlN intermediate layer in GaN grown by molecular beam epitaxy. J. Cryst. Growth 2000, 216, 15–20. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Pacheco, F.J.; Molina, S.I.; Stemmer, J.; Aderhold, J.; Graul, J. Structural characterization of high temperature AlN intermediate layer in GaN grown by molecular beam epitaxy. Mater. Sci. Eng. B 2001, 80, 299–303. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Liu, Z.; Wang, H.; Wen, L.; Li, G. Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition. Sci. Rep. 2015, 5, 11480. [Google Scholar] [CrossRef]
- Dadgar, A.; Schulze, F.; Wienecke, M.; Gadanecz, A.; Bläsing, J.; Veit, P.; Hempel, T.; Diez, A.; Christen, J.; Krost, A. Epitaxy of GaN on silicon—Impact of symmetry and surface reconstruction. New J. Phys. 2007, 9. [Google Scholar] [CrossRef]
- Serban, E.A.; Persson, P.O.Å.; Poenaru, I.; Junaid, M.; Hultman, L.; Birch, J.; Hsiao, C.-L. Structural and compositional evolutions of Inx Al1−xN core–shell nanorods grown on Si(111) substrates by reactive magnetron sputter epitaxy. Nanotechnology 2015, 26, 215602. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Cascajero, A.; Naranjo, F.B.; de la Mata, M.; Molina, S.I. Structural Characterization of Al0.37In0.63N/AlN/p-Si (111) Heterojunctions Grown by RF Sputtering for Solar Cell Applications. Materials 2021, 14, 2236. https://doi.org/10.3390/ma14092236
Núñez-Cascajero A, Naranjo FB, de la Mata M, Molina SI. Structural Characterization of Al0.37In0.63N/AlN/p-Si (111) Heterojunctions Grown by RF Sputtering for Solar Cell Applications. Materials. 2021; 14(9):2236. https://doi.org/10.3390/ma14092236
Chicago/Turabian StyleNúñez-Cascajero, Arántzazu, Fernando B. Naranjo, María de la Mata, and Sergio I. Molina. 2021. "Structural Characterization of Al0.37In0.63N/AlN/p-Si (111) Heterojunctions Grown by RF Sputtering for Solar Cell Applications" Materials 14, no. 9: 2236. https://doi.org/10.3390/ma14092236
APA StyleNúñez-Cascajero, A., Naranjo, F. B., de la Mata, M., & Molina, S. I. (2021). Structural Characterization of Al0.37In0.63N/AlN/p-Si (111) Heterojunctions Grown by RF Sputtering for Solar Cell Applications. Materials, 14(9), 2236. https://doi.org/10.3390/ma14092236