Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, M.; Hinterding, R.; Feldhoff, A. High power factor vs. high ZT—A review of thermoelectric materials for high-temperature application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef]
- Liu, Z.; Sato, N.; Gao, W.; Yubuta, K.; Kawamoto, N.; Mitome, M.; Kurashima, K.; Owada, Y.; Nagase, K.; Lee, C.-H.; et al. Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 1. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. Ising pairing in superconducting NbSe2 atomic layers. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, Y.; Peng, Q.; Chen, Y. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons. Sci. Rep. 2016, 6, 21639. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Pan, Y.; Wang, D.; Deng, H. Structural Stability and Electronic and Optical Properties of Bulk WS2 from First-Principles Investigations. J. Electron. Mater. 2020, 49, 7363. [Google Scholar] [CrossRef]
- Ataca, C.; Şahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 2012, 116, 8983. [Google Scholar] [CrossRef]
- Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W.N.; Wu, X.; Zeng, X.C. MoS2/MX2 heterobilayers: Bandgap engineering via tensile strain or external electrical field. Nanoscale 2014, 6, 2879. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Basu, R.; Bhatt, R.; Pitale, S.; Singh, A.; Aswal, D.K.; Gupta, S.K.; Navaneethan, M.; Hayakawa, Y. CuCrSe2: A high performance phonon glass and electron crystal thermoelectric material. J. Mater. Chem. A 2013, 1, 11289. [Google Scholar] [CrossRef]
- Srivastana, D.; Tewari, G.C.; Kappinen, M.; Nieminen, R.M. First-principles study of layered antiferromagnetic CuCrX2 (X = S, Se and Te). J. Phys. Condens. Matter. 2013, 25, 105504. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Peregudova, N.N.; Syrokvashin, M.M.; Mazalov, L.N.; Sokolov, V.V.; Yu, I.; Filatova, A.; Pichugin, Y. Xanes of X-ray absorbtion K edges of chromium dichalcogenides CuCr1-xM′xS2 and MCrX2. J. Struct. Chem. 2016, 57, 1355. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Pelmenev, K.G.; Zvereva, V.V.; Peregudova, N.N. Seebeck Coefficient of Cation-Substituted Disulfides CuCr1− xFexS2 and Cu1− xFexCrS2. J. Electron. Mater. 2018, 47, 3392. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Trubina, S.V.; Nikolenko, A.D.; Ivlyushkin, D.V.; Zavertkin, P.S.; Sotnikov, A.V.; Kriventsov, V.V. XANES investigation of novel lanthanide-doped CuCr0.99Ln0.01S2 (Ln = La, Ce) solid solutions. Appl. Phys. A 2020, 126, 537. [Google Scholar] [CrossRef]
- Hansen, A.L.; Dankwort, T.; Groβ, H.; Etter, M.; König, J.; Duppel, V.; Kienle, L.; Bensch, W. Structural properties of the thermoelectric material CuCrS2 and of deintercalated CuxCrS2 on different length scales: X-ray diffraction, pair distribution function and transmission electron microscopy studies. J. Mater. Chem. C 2017, 36, 9331. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Kumar, P.; Rastogi, A.K.; Pasha, S.K.; Gupta, G. Increase in the thermoelectric efficiency of the disordered phase of layered antiferromagnetic CuCrS2. J. Electron. Mater. 2011, 40, 2368. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, B.-P.; Ge, Z.-H.; Shang, P.-P. Preparation and thermoelectric properties of ternary superionic conductor CuCrS2. J. Solid State Chem. 2012, 186, 109. [Google Scholar] [CrossRef]
- Kaltzoglou, A.; Vaqueiro, P.; Barbier, T.; Guilmeau, E.; Powell, A.V. Ordered-defect sulfides as thermoelectric materials. J. Electron. Mater. 2014, 43, 2029. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V. Magnetic and transport properties of CuCr1-x VxS2 compounds. Phys. Solid State 1999, 41, 1327. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R. Synthesis and X-ray diffraction study of CuCr1-xVxS2. Inorg. Mater. 2000, 36, 437. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, É.V.; Abdullin, A.R. Investigation of superionic phase transition in the CuCr1-xVxS2 system by x-ray diffraction and magnetic methods. Phys. Solid State. 2000, 42, 1508. [Google Scholar] [CrossRef]
- Al’mukhametov, R.F.; Yakshibaev, R.A.; Gabitov, E.V.; Abdullin, A.R.; Kutusheva, R.M. Structural properties and ionic conductivities of CuCr1-xVxS2solid solutions. Phys. Stat. Sol. 2003, 236, 29–33. [Google Scholar] [CrossRef]
- Akmanova, G.R.; Davleshina, A.D. Ionic conductivity and diffusion in superionic conductors CuCrS2-AgCrS2. Lett. Mater. 2013, 3, 76. [Google Scholar] [CrossRef][Green Version]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; van Laar, B. Crystal structures and magnetic structures of some metal (I) chromium (III) sulfides and selenides. J. Solid State Chem. 1973, 6, 574. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskii, G.A. Metal-insulator transition, magnetoresistance, and magnetic properties of 3d-sulfides. Low Temp. Phys. 2006, 32, 725. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Zvereva, V.V. Vanadium doped layered copper-chromium sulfides: The correlation between the magnetic properties and XES data. Vacuum 2020, 179, 109390. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bohra, A.; Basu, R.; Bhatt, R.; Ahmad, S.; Meshram, K.N.; Debnath, A.K.; Singh, A.; Sarkar, S.K.; Navneethan, M.; et al. High thermoelectric performance of (AgCrSe2)0.5(CuCrSe2)0.5 nano-composites having all-scale natural hierarchical architectures. J. Mater. Chem. A 2014, 2, 17122. [Google Scholar] [CrossRef]
- Wu, D.; Huang, S.; Feng, D. Revisiting AgCrSe2 as a promising thermoelectric material. Phys. Chem. Chem. Phys. 2016, 18, 23872. [Google Scholar] [CrossRef] [PubMed]
- Vassilieva, I.G.; Kardash, T.Y.; Malakhov, V.V. Phase transformations of CuCrS2: Structural and chemical study. J. Struct. Chem. 2009, 50, 288. [Google Scholar] [CrossRef]
- Hong, J.; Delaire, O. Electronic instability and anharmonicity in SnSe. Mater. Today Phys. 2019, 10, 100093. [Google Scholar] [CrossRef]
- Suwardi, A.; Cao, J.; Hu, L.; Wei, F.; Wu, J.; Zhao, Y.; Lim, S.H.; Yang, L.; Tan, X.Y.; Chien, S.W.; et al. Tailoring the phase transition temperature to achieve high-performance cubic GeTe-based thermoelectrics. J. Mater. Chem. A. 2020, 8, 18880. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database, Version 2.1.0; Leibniz Institute for Information Infrastructure, FIZ Karlsruhe: Eggenstein-Leopoldshafen, Germany, 2014.
- BAND 2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Available online: http://www.scm.com (accessed on 21 May 2021).
- Murphy, D.W.; Chen, H.S.; Tell, B. Superionic conduction in AgCrS2 and AgCrSe2. J. Electrochem. Soc. 1977, 124, 1268. [Google Scholar] [CrossRef]
- Thomas, G.A. Critical resistivity near an order-disorder transition. Phys. Rew. Let. 1973, 31, 241. [Google Scholar] [CrossRef]
- Korotaev, E.V.; Syrokvashin, M.M.; Peregudova, N.N.; Kanazhevskii, V.V.; Mazalov, L.N.; Sokolov, V.V. Effects of the nearest-neighbor environment of copper atoms on the XANES spectra of layered chromium-copper disulfides. J. Struct. Chem. 2015, 56, 596. [Google Scholar] [CrossRef]
- Le Nagard, N.; Collin, G.; Gorochov, O. Etude structurale et proprietes physiques de CuCrS2. Mat. Res. Bull. 1979, 14, 1411. [Google Scholar] [CrossRef]
- Khumalo, F.S.; Huges, H.P. Vacuum-ultraviolet reflectivity spectra of some α-NaFeO2 layer-type compounds. Phys. Rew. B 1980, 22, 4066. [Google Scholar] [CrossRef]
Atmosphere | Annealing Temperature, °C | ρ, g/cm3 |
---|---|---|
vacuum | 650 (compressing pressure of 70 MPa) | 4.07 |
argon | 800 | 3.52 |
Sample | Mean Element Concentration, Mass% | ||
---|---|---|---|
Cu | Cr | S | |
Reference concentration | 35 | 29 | 36 |
Powder | 35 | 29 | 36 |
Vacuum treated at 650 °C | 36 | 29 | 35 |
Argon treated at 800 °C | 35 | 29 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V. Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials 2021, 14, 2729. https://doi.org/10.3390/ma14112729
Korotaev EV, Syrokvashin MM, Filatova IY, Sotnikov AV. Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials. 2021; 14(11):2729. https://doi.org/10.3390/ma14112729
Chicago/Turabian StyleKorotaev, Evgeniy V., Mikhail M. Syrokvashin, Irina Yu. Filatova, and Aleksandr V. Sotnikov. 2021. "Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2" Materials 14, no. 11: 2729. https://doi.org/10.3390/ma14112729
APA StyleKorotaev, E. V., Syrokvashin, M. M., Filatova, I. Y., & Sotnikov, A. V. (2021). Effect of the Order-Disorder Transition on the Electronic Structure and Physical Properties of Layered CuCrS2. Materials, 14(11), 2729. https://doi.org/10.3390/ma14112729