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Abstract: The work reports a comprehensive study of the Seebeck coefficient, electrical resistivity and
heat capacity of CuCrS2 in a wide temperature range of 100–740 K. It was shown that the value of the
Seebeck coefficient is significantly affected by the sample treatment procedure. The order-to-disorder
(ODT) phase transition was found to cause a metal-insulator transition (MIT). It was established that
the ODT diminishes the Seebeck coefficient at high temperatures (T > 700 K). The DFT calculations
of the CuCrS2 electronic structure showed that the localization of copper atoms in octahedral sites
makes the band gap vanish due to the MIT. The decrease of CuCrS2 electrical resistivity in the ODT
temperature region corresponds to the MIT.

Keywords: layered copper-chromium disulfide; Seebeck coefficient; electrical resistivity; order-
disorder transition; DSC; DFT

1. Introduction

Waste energy harvesting is a pressing problem of modern highly efficient industries.
Waste energy accounts for about a half of the total energy consumption. Therefore, new
types of thermoelectric materials for direct conversion of waste heat into electric energy
have been developed [1,2]. The modern materials science is focused on material nanos-
tructuring. Nanostructured materials usually combine high electronic conductivity and
thermal resistivity due to the difference between their electron and phonon mean free paths.
Material nanostructuring typically requires a special high cost layer-by-layer processing or
synthesis techniques. Natural nanostructured materials are of special interest due to the
self-assembly exhibited by these materials. Layered transition metal dichalcogenides MX2
(M is a transition metal; X = S, Se, Te) can be considered as nanostructured materials of
natural origin. These compounds are formed by alternating metal and chalcogenide layers.
The unstable MX2-layers can be stabilized by the intercalation of metal atoms between
dichalcogenide layers [3–9]. Intercalation or cationic substitution affect significantly the
physical properties of MX2 based compounds [8–12]. Copper-chromium disulfide CuCrS2
is considered to be a promising functional material for electronic devices. Undoped copper-
chromium disulfide and CuCrS2 based solid solutions exhibit a wide range of physical
properties such as thermoelectricity [9–16], ionic conductivity [17–21] and various magnetic
properties [22–24]. Thanks to the combination of ionic conductivity and thermoelectric
properties (the Seebeck coefficient, electric and thermal conductivities, ZT) demonstrated
by CuCrS2 and similar layered transition metal dichalcogenides MCrX2 (M = Cu, Ag; X = S,
Se), these compounds can be considered phonon glasses. Phonon glasses usually have
a high value of the Seebeck coefficient due to the “fixed” glass matrix and low thermal
conductivity as a result of phonon scattering on mobile cations [8,9,13,25,26]. The ionic
conductivity of MCrX2 is caused by the redistribution of mobile metal atoms over crys-
tallographic sites in the MX2 sublattice. As the temperature increases, the mobile metal
atoms begin to occupy the sites that were unoccupied in the room temperature region. As a
result, the MCrX2 conductivity and the order-disorder phase transition (ODT) are increased.
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Note that CuCrS2 structure does not significantly changes before and after ODT phase
transition [27], in contrast the traditional to SnSe- and GeTe-based thermoelectric materi-
als [28,29], where phase transition is accompanied by the spatial group changes. Hence, the
similarity of CuCrS2 and Se/Te-based systems is that both demonstrate phase transitions.
The difference is that ODT phase transition in CuCrS2 does not significantly affect the
crystallographic structure [27]. Both Se/Te-based systems materials were reported to have
a promising ZT values of ~1.5. However, CuCS2 was also reported to have high ZT values
of ~2 [14]. Thus, this fact makes it promising to study the thermoelectric properties of
CuCrS2 and CuCrS2-based materials. The ODT increases structural disorder and, therefore,
enhances phonon scattering and suppresses the lattice thermal conductivity. Thus, one
can conclude that thermoelectric properties of MCrX2 can be significantly affected by the
ODT phase transition [26]. However, most of the reported data concerning thermoelectric
properties of CuCrS2 and CuCrS2 based solid solutions were carried out in the temperature
range below the ODT [11,12,14]. Thus, the ODT influence on the CuCrS2 thermoelectric
properties has not been discussed yet. Note that the redistribution of mobile metal atoms
over the crystallographic sites also affects the CuCrS2 electronic structure. The electronic
structure of valence and conduction bands is the key aspect when interpreting and pre-
dicting the character of thermoelectric properties [9,11]. Therefore, DFT calculations of
DOS distribution were carried out to interpret the temperature dependence of the CuCrS2
Seebeck coefficient in the ODT region.

2. Experimental

The initial CuCrS2 powder sample was synthesized from copper and chromium oxides
(CuO, Cr2O3) with a purity of 99.99% (Millipore Sigma, St. Louis, MO, USA; MSE Supplies
LLC, Tucson, AZ, USA). A mixture of initial metal oxides in a horizontal glassy carbon boat
was placed in a quartz reactor. The air was removed from the reaction volume by argon
and ammonium rhodanide (NH4SCN) decomposition products of gas flow. The reaction
mixture was heated to 1050 ◦C and ground for several times during the synthesis. The
completeness of sulfidization was controlled by powder X-ray diffraction (XRD) and by
weighing the sample. The XRD experiment was carried out using non-monochromatic
CuKα-radiation (Shimadzu XRD 7000S diffractometer, Shimadzu Corporation, Kyoto,
Japan). The XRD pattern of the synthesized CuCrS2 sample is shown in Figure 1. The XRD
pattern indicates that the synthesized sample is composed of a single phase corresponding
to the rhombohedral space group (R3m). The positions of diffraction peaks and intensity
ratios are in good agreement with the data of the Inorganic Crystal Structure Database
(denoted “ICSD” in Figure 1) [30]. The calculated unit cell parameters a = 3.480(4) and
c = 18.689(5) Å correlate well with previously reported and reference data [11,27,30].

The ceramic samples were prepared using the synthesized CuCrS2 powder sample
in the course of a two-step procedure. At the first step, the samples were subjected to
10 MPa cylindrical compression at room temperature in air. At the second step, the
compressed samples were treated under different conditions (Table 1). The composition
of compressed samples (Table 2) was analyzed by scanning electron microscopy (Hitachi
TM3000, Tokyo, Japan, microscope equipped with a Bruker EDS QUANTAX 70 analyzer,
Billerica, MA, USA). The backscattered electron (BSE) images are shown in Figure 2. The
SEM images were made with a 1000× magnification. The elemental composition of the
studied samples correlates well with the theoretical reference concentration. The EDS
analysis was performed with an accuracy of ~1%. The SEM images indicate that the
sample’s density increases in the series powder→argon treated sample→vacuum treated
sample. The most homogeneous surface was observed for the vacuum treated ceramic
sample (Figure 2). This fact agrees well with the density measurements of ceramic samples
(Table 1).
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Figure 1. Powder diffraction pattern of the synthesized CuCrS2 sample (XRD) and reference data (ICSD).

Table 1. Sample treatment conditions.

Atmosphere Annealing Temperature, ◦C ρ, g/cm3

vacuum 650 (compressing pressure of 70 MPa) 4.07
argon 800 3.52

Table 2. Elemental composition of synthesized CuCrS2 powder and ceramic samples.

Sample
Mean Element Concentration, Mass%

Cu Cr S

Reference concentration 35 29 36
Powder 35 29 36

Vacuum treated at 650 ◦C 36 29 35
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Figure 2. SEM images of CuCrS2 samples: powder (a), vacuum compressed (b) and argon atmosphere treated samples (c). 
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can be due to the fact that the argon treated sample has a lower density than the vacuum 
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creases with temperature, which is typical of semiconductor materials. Thus, annealing 
the sample in the argon atmosphere can be an efficient procedure to increase the value of 
the Seebeck coefficient of CuCrS2 based materials. The hot vacuum pressing procedure 
increases the sample density. The sample treatment in vacuum at 650 °C results the opti-
mum Seebeck coefficient value (~200 uV/K), typical for SnSe- and GeTe-based thermoe-
lectric materials [28,29]. Thus, the sample treatment procedure could be used to optimize 
the Seebeck coefficient value both the cationic substitution of CuCrS2-matrix [11]. 

Figure 2. SEM images of CuCrS2 samples: powder (a), vacuum compressed (b) and argon atmosphere treated samples (c).

The temperature dependence of the Seebeck coefficient was measured in a rarefied
5 Torr helium atmosphere with samples placed between two copper contact pads. The 5 ◦C
temperature gradient between the copper pads was maintained using a Thermodat-13K5
temperature controller (LLC RPE Control Systems, Perm, Russia). The thermoelectric
power between the copper pads was measured using a Keysight 34465A digital voltmeter
(Keysight Technologies, Santa-Rosa, CA, USA). The electrical resistivity was measured as
the resistance between the copper pads. In this case, the temperature difference between
the pads did not exceed 0.5 K.
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The thermal effects accompanying the ODT phase transition were studied on a DSC-
500 differential scanning calorimeter (LLC Specpribor, Samara, Russia). A 20 mg sample
was measured in an open aluminum crucible with a heating rate of 10 ◦C/min in a
50 mL/min argon flow.

The valence band partial density-of-states (pDOS) distribution was calculated with
the BAND package [31] using the generalized gradient approximation (GGA), a standard
Slater-type basis set with three basis functions per atomic orbital, one polarization function
(TZP) and the Perdew-Burke-Ernzerhof exchange-correlation potential (PBESol-D). The
initial atomic coordinates were taken from the ICSD [30]. In the case of copper atoms
localized at the octahedral sites of the van der Waals gap, the geometry was optimized
using the initial atomic coordinates taken from [27].

3. Results and Discussion

The thermoelectric properties of copper-chromium disulfide and CuCrS2 based solid
solutions are significantly influenced by the synthesis conditions and the sample prepara-
tion procedure [11–16]. Thus, it is particularly interesting to analyze the dependence of the
Seebeck coefficient on the sample treatment procedure.

Figure 3a shows the temperature dependencies of the Seebeck coefficient (S) for
compressed CuCrS2 samples. The positive sign of S indicates the p-type conductivity. This
fact is in good agreement with previously reported data [11–16]. Note that the treatment
procedure does not affect the conductivity type. The largest S value of ~450 µV/K (at
T ~550 K) was observed for the argon treated sample at 800 ◦C (Ar800). The S values
measured for the vacuum treated sample at 650 ◦C (V650) are lower than those measured
for the vacuum treated sample. On the other hand, the electrical resistivity for the argon
treated sample is one to three orders larger than for the vacuum treated sample (Figure 3b).
This can be due to the fact that the argon treated sample has a lower density than the
vacuum treated sample (Table 1). At the same time, the electrical resistivity of both
samples decreases with temperature, which is typical of semiconductor materials. Thus,
annealing the sample in the argon atmosphere can be an efficient procedure to increase
the value of the Seebeck coefficient of CuCrS2 based materials. The hot vacuum pressing
procedure increases the sample density. The sample treatment in vacuum at 650 ◦C results
the optimum Seebeck coefficient value (~200 uV/K), typical for SnSe- and GeTe-based
thermoelectric materials [28,29]. Thus, the sample treatment procedure could be used to
optimize the Seebeck coefficient value both the cationic substitution of CuCrS2-matrix [11].
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samples. The inset shows the enlarged curves.

Above 600 K, the Seebeck coefficient and electrical resistivity exhibit similar tempera-
ture dependencies for all studied samples. Both S(T) and ρ(T) temperature dependencies
exhibits inflection features in the corresponding temperature region at T~600–700 K. This
fact correlates well with the data reported in [15]. Note that the presence of inflection is
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not affected by the treatment procedure and can be therefore related to physical properties
of CuCrS2. For instance, the order-disorder phase transition (ODT) occurs in the same
temperature region [17–22,27]. Differential scanning calorimetry (DSC) is the most com-
mon experimental technique to study phase transitions. The DSC sensitivity for ODT
in similar chalcogenides AgCrS2 was reported in [26,32]. However, DSC has not yet
been used to study ODT in CuCrS2. The temperature dependence of heat capacity is
shown in Figure 4. The investigated temperature region exhibits a single peak at 695 K
corresponding to an abrupt Cp decrease. The shape of the Cp(T) line is characteristic of
the second-order phase transition. Thus, the observed phase transition corresponds to the
ODT and agrees well with the previously reported data [26,27,32]. The inflection feature on
the S(T) curves lies in the same temperature region as the ODT. Thereby, the decrease of the
Seebeck coefficient at T > 700 K is due to copper migration from the “ordered” tetrahedral
sites to the “disordered” ones [26,27]. The positions of ρ(T) infection features are shifted to
lower temperatures compared to those exhibited by S(T) and Cp(T) temperature depen-
dences. Note however that inflection features appear on the temperature dependencies of
electrical resistivity as a result of ODT [33]. Since thermopower, electrical resistivity and
heat capacity temperature dependencies involve different physical processes, the inflection
point of these dependencies may occur at different positions. Hence, the observed inflec-
tion features on S(T), ρ(T) and Cp(T) curves are of the same origin and correspond to the
order-to-disorder transition.
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Different crystallographic sites between the CrS2 layers (the van der Waals gap region)
are tetrahedral and octahedral o-sites. In the ordered state at room temperature, the copper
atoms are localized at the tetrahedral sites [9,27,34,35]. The probability of the localization
of o-sites increases in the ODT temperature region. The redistribution of copper atoms
between different sites can affect the CuCrS2 electronic structure. It was previously reported
that the value of the Seebeck coefficient is significantly affected by the structure of the
partial density of states (pDOS) in conduction and valence bands [9,11]. Thus, the ODT
influence on the CuCrS2 electronic structure is of special interest. Figure 5 shows pDOS
distributions of CuCrS2 calculated for different copper sites. Figure 5a shows the electronic
structure corresponding to the localization of copper atoms at the “ordered” tetrahedral
sites. The main contributions of copper and chromium d-states are localized near the
valence band top at −2.5 and −1 eV below the Fermi level (denoted as “Ef” in Figure 5),
respectively. The main contribution of sulfur p-states is localized deeply in the valence band
at −4 eV. Note that the most significant contribution to the valence band structure is due to
copper states and corresponds to the filled d-electron shell of copper (3d10 configuration).
The conduction band bottom is mainly constituted by chromium d-states formed by the
unfilled chromium d-shell (3d3 configuration). The contribution of sulfur and copper states
to the structure of the conduction band bottom is smaller. According to the obtained data,
the copper-chromium disulfide is a semiconductor with a band gap of ~0.29 eV (denoted
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as “Eg” in Figure 5). The calculated pDOS is in good agreement with experimental and
calculated data reported in [9,36].
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The localization of copper atoms in the octahedral o-sites significantly affects the
pDOS (Figure 5d). As a result of pDOS redistribution, the valence band narrows while the
valence band edge is shifted from −7 to −6 eV. The most significant contribution to the
structure of the CuCrS2 valence band is still related to the copper states.

However, the contribution of copper states is shifted to the high energy region and is
localized at −1.5 eV. The character of sulfur and chromium pDOS distribution is generally
preserved. Nevertheless, the main contribution of sulfur is slightly shifted to the high
energy region as a result of the valence band narrowing. Note that the intensity of the total
DOS at the conduction band bottom is lower than those corresponding to the tetrahedral
localization of copper atoms. The character of pDOS distribution in the conduction band
remains almost unchanged, and the major contribution is due to chromium states. The
band gap vanishes as sulfur, chromium and copper states shift to the Fermi-level region
(Figure 5d).

Figure 5a,d correspond to two extreme cases of copper atoms localization. It can
be assumed that the real sample structure combines simultaneously two types of copper
atoms localization. The simulation of mixed both tetrahedral and octahedral copper atom
localization (denoted as “(T)” and “(O)” in Figure 5b,c, respectively) allow one to observe
the changes in partial DOS distribution. With an increase of number of copper atoms
localized at the octahedral sites the main contribution of copper states is shifted to the
Fermi level region (Figure 5b–d). This shift results the band gap narrowing across the
transition from tetrahedral to octahedral copper atoms localization. The localization of one
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of three non-equivalent copper atoms at octahedral site leads to band gap width decreasing
from 0.29 to 0.02 eV (Figure 5b). The localization of two of three non-equivalent copper
atoms at octahedral sites leads to band gap vanishing (Figure 5c).

Thus, the localization of copper atoms at the octahedral o-sites in the ODT temperature
region corresponds to the metal-insulator transition (MIT). Thus, we conclude that the
order-to-disorder phase transition in CuCrS2 led to the MIT. Note that the cationic substitu-
tion in CuCrS2 lead to the MIT and significantly diminished the Seebeck coefficient [11].
Hence, the S(T) inflection feature is explained by the fact that the electronic structure
is changed during the MIT. The band gap vanishing leads to the formation of metallic
conductivity and correlates with electrical resistivity values which decrease in the ODT
temperature region.

4. Conclusions

A comprehensive study of the CuCrS2 Seebeck coefficient and electrical resistivity in
a wide temperature range of 100–740 K was carried out. It was established that the value
of the Seebeck coefficient is significantly affected by the sample treatment procedure. The
decrease of the Seebeck coefficient in the high-temperature region (T > 700 K) is caused by
the electronic structure reconfiguration as a result of the order-disorder phase transition
(ODT). The DFT calculations showed that the localization of copper atoms at the octahedral
sites led to the metal-insulator transition (MIT) and a band gap vanishing. The decrease
of electrical resistivity in the ODT temperature region (T > 650 K) corresponds to metallic
conductivity as a result of the MIT. In the temperature region above the ODT temperature,
the copper atoms are statistically distributed between tetrahedral and octahedral sites.
Thus, the real sample could be considered as a mixture of both semiconductor and metallic
areas. According the Anderson localization model, the electrons could be localized in the
metallic areas. This results the preservation of the semiconductor conductivity character.
Hence, the Seebeck coefficient and electrical resistivity do not dramatically decrease after
ODT. Thus, one can observe the inflection feature regions on the Seebeck coefficient and
the electrical resistivity temperature dependencies curves.
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