Understanding the Steric Structures of Dicarboxylate Ions Incorporated in Octacalcium Phosphate Crystals
Abstract
:1. Introduction
2. Calculation Method
3. Results and Discussion
3.1. Validation for the Estimation of the Steric Structures of Incorporated Dicarboxylate Ions
3.2. Steric Structures of Incorporated Aliphatic Dicarboxylate Ions in OCP
3.3. Steric Structures of Succinic Acid Derivatives Bearing Side Chains in OCP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Mathew, M.; Brown, W.E.; Schroeder, L.W.; Dickens, B. Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate Ca8(HPO4)2(PO4)4·5H2O. J. Crystallogr. Spectrosc. Res. 1988, 18, 235–250. [Google Scholar] [CrossRef]
- Monma, H.; Goto, M. Succinate-complexed octacalcium phosphate. Bull. Chem. Soc. Jpn. 1983, 56, 3843–3844. [Google Scholar] [CrossRef] [Green Version]
- Yamada, I.; Tagaya, M. Immobilization of 2,2′-bipyridine-5,5′-dicarboxylic acid in layered octacalcium phosphate. Colloid Interface Sci. Commun. 2019, 30, 100182. [Google Scholar] [CrossRef]
- Sugiura, Y.; Makita, Y. Ammonium inhibition of the intercalation of dicarboxylic acid molecules into octacalcium phosphate layer by substitution. J. Solid State Chem. 2019, 279, 120923. [Google Scholar] [CrossRef]
- Yokoi, T.; Goto, T.; Kitaoka, S. Transformation of dicalcium phosphate dihydrate into octacalcium phosphate with incorporated dicarboxylate ions. J. Ceram. Soc. Jpn. 2018, 126, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Reid, D.G.; Duer, M.J.; Chan, J.C.C. Solid state NMR-An indispensable tool in organic-inorganic biocomposite characterization; refining the structure of octacalcium phosphate composites with the linear metabolic di-acids succinate and adipate. Solid State Nucl. Magn. Reson. 2018, 95, 1–5. [Google Scholar] [CrossRef]
- Yokoi, T.; Machida, S.; Sugahara, Y.; Hashimoto, M.; Kitaoka, S. Enantioselective incorporation of dicarboxylate guests by octacalcium phosphate. Chem. Commun. 2017, 53, 6524–6527. [Google Scholar] [CrossRef]
- Yokoi, T.; Kamitakahara, M.; Ohtsuki, C. Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain. Dalton Trans. 2015, 44, 7943–7950. [Google Scholar] [CrossRef]
- Davies, E.; Müller, K.H.; Wong, W.C.; Pickard, C.J.; Reid, D.G.; Skepper, J.N. Citrate bridges between mineral platelets in bone. Proc. Natl. Acad. Sci. USA 2014, 111, E1354–E1363. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, T.; Kato, H.; Kim, I.Y.; Kikuta, K.; Kamitakahara, M.; Kawashita, M.; Ohtsuki, C. Formation of octacalcium phosphates with co-incorporated succinate and suberate ions. Dalton Trans. 2012, 41, 2732–2737. [Google Scholar] [CrossRef]
- Ishihara, S.; Matsumoto, T.; Onoki, T.; Sohmura, T.; Nakahira, A. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing. Mater. Sci. Eng. C 2009, 29, 1885–1888. [Google Scholar] [CrossRef]
- Aoki, S.; Nakahira, A.; Nakayama, H.; Sakamoto, K.; Yamaguchi, S.; Suganuma, K. Synthesis and aldehyde absorption properties of aspartate-octacalcium phosphate inclusion compound. J. Phys. Chem. Solids 2004, 65, 465–470. [Google Scholar] [CrossRef]
- Tuncer, M.; Bakan, F.; Gocmez, H.; Erdem, E. Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: Biosupercaps. Nanoscale 2019, 11, 18375–18381. [Google Scholar] [CrossRef]
- Monma, H. The incorporation of dicarboxylates into octacalcium bis(hydrogenphosphate) tetrakis(phosphate) pentahydrate. Bull. Chem. Soc. Jpn. 1984, 57, 599–600. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Sakamoto, K.; Yamaguchi, S.; Nakahira, A. Syntheses of octacalcium phosphate containing dicarboxylic acids and effects of the side groups on the crystal growth of octacalcium phosphate. J. Ceram. Soc. Jpn. 2000, 108, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, T.; Goto, T.; Hara, M.; Sekino, T.; Seki, T.; Kamitakahara, M.; Ohtsuki, C.; Kitaoka, S.; Takahashi, S.; Kawashita, M. Incorporation of tetracarboxylate ions into octacalcium phosphate for the development of next-generation biofriendly materials. Commun. Chem. 2021, 4, 4. [Google Scholar] [CrossRef]
- Granovsky, A.A. FIREFLY (Version 8.2.0); Moscow State University: Moscow, Russia, 2016. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Hanwell, M.D. AVOGADRO (Version 1.2.0); Kitware, Inc.: New York, NY, USA, 2016. [Google Scholar]
- Powder Diffraction file #01-074-1301.
- Monma, H. Apatitic intercalation compounds containing dicarboxylates. Gypsum Lime 1992, 237, 108–114. [Google Scholar]
Dicarboxylic Acids | Experimental Value | Calculated Value | ∆d100/L (%) | |
---|---|---|---|---|
d100(exp.) (Å) | L (Å) | d100(cal.) (Å) | ||
Malonic acid | 19.6 [24] | 2.62 | 20.1 | −19.9 |
Succinic acid | 21.4 [24] | 3.86 | 21.3 | +3.0 |
Glutaric acid | 22.3 [24] | 5.07 | 22.4 | −2.3 |
Adipic acid | 23.6 [24] | 6.40 | 23.7 | −0.9 |
Pimelic acid | 24.4 [24] | 7.64 | 24.8 | −5.4 |
Suberic acid | 26.1 [24] | 8.95 | 26.0 | +0.6 |
Azelaic acid | 25.7 [24] | 10.19 | 27.2 | −14.8 |
Sebacic acid | 26.0 [24] | 11.51 | 28.4 | −21.2 |
Dicarboxylic Acids | Experimental Value | Calculated Value | ∆d100/L (%) | ||
---|---|---|---|---|---|
d100(exp.) (Å) | Type of steric structure | L (Å) | d100(cal.) (Å) | ||
Succinic acid | 21.4 [14] | Z C | 3.86 3.31 | 21.3 20.8 | +3.0 +19.3 |
Methylsuccinic acid | 20.5 [15] | Z C | 3.84 3.22 | 21.3 20.7 | −19.8 -5.5 |
Aspartic acid | 21.3 [15] | Z C | 3.91 3.09 | 21.3 20.6 | −0.9 +18.9 |
Malic acid | 20.8 [15] | Z C | 3.91 3.28 | 21.3 20.7 | −13.5 +1.8 |
Mercaptosuccinic acid | 21.0 [15] | Z C | 3.86 3.08 | 21.3 20.6 | −7.3 +14.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yokoi, T.; Kawashita, M. Understanding the Steric Structures of Dicarboxylate Ions Incorporated in Octacalcium Phosphate Crystals. Materials 2021, 14, 2703. https://doi.org/10.3390/ma14112703
Yokoi T, Kawashita M. Understanding the Steric Structures of Dicarboxylate Ions Incorporated in Octacalcium Phosphate Crystals. Materials. 2021; 14(11):2703. https://doi.org/10.3390/ma14112703
Chicago/Turabian StyleYokoi, Taishi, and Masakazu Kawashita. 2021. "Understanding the Steric Structures of Dicarboxylate Ions Incorporated in Octacalcium Phosphate Crystals" Materials 14, no. 11: 2703. https://doi.org/10.3390/ma14112703