Structural Materials: Identification of the Constitutive Models and Assessment of the Material Response in Structural Elements Strengthened with Externally-Bonded Composite Material
Abstract
:1. Introduction
2. Materials’ Behavior: Constitutive Relations
2.1. Composite Material
2.2. Concrete
2.3. Steel
3. Behavior of Materials as Components of a System
3.1. Finite Element Model
3.2. Prediction of the Transient Mechanical Response of the Composite Structural Element: Validation
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Planès, T.; Larose, E. A review of ultrasonic Coda Wave Interferometry in concrete. Cem. Concr. Res. 2013, 53, 248–255. [Google Scholar] [CrossRef]
- Anderson, D.A.; Seals, R.K. Pulse velocity as a predictor of 28 and 90 day strength. ACI J. Proc. 1981, 78, 116–122. [Google Scholar]
- Lillamand, I.; Chaix, J.-F.; Ploix, M.-A.; Garnier, V. Acoustoelastic effect in concrete material under uni-axial compressive loading. NDT E Int. 2010, 43, 655–660. [Google Scholar] [CrossRef]
- Berthaud, Y. Damage measurement in concrete via an ultrasonic technique. Part I experiment. Cem. Concr. Res. 1991, 21, 73–82. [Google Scholar] [CrossRef]
- Ruffino, E.; Delsanto, P. Scattering of ultrasonic waves by void inclusions. J. Acoust. Soc. Am. 2000, 108, 1941. [Google Scholar] [CrossRef] [PubMed]
- Lombard, O.; Barrière, C.; Leroy, V. Nonlinear multiple scattering of acoustic waves by a layer of bubbles. Europhys. Lett. 2015, 112, 24002–24007. [Google Scholar] [CrossRef] [Green Version]
- Craster, R.V.; Guenneau, S. Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 166. [Google Scholar]
- Varadan, V.K.; Ma, Y.; Varadan, V.V. Multiple scattering of compressional and shear waves by fiber-reinforced composite materials. J. Acoust. Soc. Am. 1986, 80, 333–339. [Google Scholar] [CrossRef]
- Varadan, V.K.; Varadan, V.V.; Pao, Y.-H. Multiple scattering of elastic waves by cylinders of arbitrary cross section. I. SH waves. J. Acoust. Soc. Am. 1978, 63, 1310–1319. [Google Scholar] [CrossRef]
- Berryman, J.G. Long-wavelength propagation in composite elastic media I. Spherical inclusions. J. Acoust. Soc. Am. 1980, 68, 1809–1819. [Google Scholar] [CrossRef]
- Berryman, J.G. Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions. J. Acoust. Soc. Am. 1980, 68, 1820–1831. [Google Scholar] [CrossRef]
- Mei, J.; Liu, Z.; Wen, W.; Sheng, P. Effective mass density of fluid-solid composites. Phys. Rev. Lett. 2006, 96, 024301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, J.; Liu, Z.; Wen, W.; Sheng, P. Effective dynamic mass density of composites. Phys. Rev. B 2007, 76, 134205. [Google Scholar] [CrossRef] [Green Version]
- Skvortsov, A.; MacGillivary, I.; Sharma, G.S.; Kessissoglou, N. Sound scattering by a lattice of resonant inclusions in a soft medium. Phys. Rev. E 2019, 99, 063006. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.S.; Skvortsov, A.; MacGillivary, I.; Kessissoglou, N. On superscattering of sound waves by a lattice of disk-shaped cavities in a soft material. Appl. Phys. Lett. 2020, 116, 041602. [Google Scholar] [CrossRef]
- Hladky-Hennion, A.C.; Decarpigny, J.N. Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: Application to Alberich anechoic coatings. J. Acoust. Soc. Am. 1991, 90, 3356–3367. [Google Scholar] [CrossRef]
- Hennion, A.C.; Bossut, R.; Audoly, C.; Decarpigny, J.N. Analysis of the scattering of a plane acoustic wave by a periodic elastic structure using the finite element method: Application to compliant tube gratings. J. Acoust. Soc. Am. 1990, 87, 1861–1870. [Google Scholar] [CrossRef]
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium. J. Sound Vib. 2019, 443, 652–665. [Google Scholar] [CrossRef]
- Sharma, G.S.; Skvortsov, A.; MacGillivray, I.; Kessissoglou, N. Sound absorption by rubber coatings with periodic voids and hard inclusions. Appl. Acoustics 2019, 143, 200–210. [Google Scholar] [CrossRef]
- Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. FRP-Strengthened RC Structures; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Ritchie, P.A.; Thomas, D.A.; Lu, L.W.; Connely, G.M. External reinforcement of concrete beams using fibre reinforced plastics. ACI Struct. J. 1991, 88, 490–500. [Google Scholar]
- Saadatmanesh, H.; Ehsani, M.R. RC beams strengthened with GFRP plates, I: Experimental study. J. Struct. Eng. ASCE 1991, 117, 3417–3433. [Google Scholar] [CrossRef]
- Takeda, K.; Mitsui, Y.; Murakami, K.; Sakai, H.; Nakamura, M. Flexural behaviour of reinforced concrete beams strengthened with carbon fibre sheets. Compos. Part A 1996, 27, 981–987. [Google Scholar] [CrossRef]
- Garden, H.N.; Hollaway, L.C.; Thorne, A.M. A preliminary evaluation of carbon fibre reinforced polymer plates for strengthening reinforced concrete members. Proc. Inst. Civ. Eng. Struct. Build. 1997, 123, 127–142. [Google Scholar] [CrossRef]
- Ross, C.A.; Jerome, D.M.; Tedesco, J.W.; Hughes, M.L. Strengthening of reinforced concrete beams with externally bonded composite laminates. ACI Struct. J. 1999, 96, 212–220. [Google Scholar]
- Meier, U.; Kaiser, H. Strengthening of structures with CFRP laminates. In Advanced Composites Materials in Civil Engineering Structures; ASCE: New York, NY, USA, 1991. [Google Scholar]
- Hollaway, L.C.; Leeming, M.B. (Eds.) Strengthening of Reinforced Concrete Structures; Woodhead Publishing: Cambridge, UK; CRC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Chajes, M.J.; Thomson, T.A.; Januszka, T.F.; Finch, W.W. Flexural strengthening of concrete beams using externally bonded composite materials. Constr. Build. Mat. Oxford UK 1994, 8, 191–201. [Google Scholar] [CrossRef]
- Sharif, A.; Al-Sulaimani, G.J.; Basunbul, I.A.; Baluch, M.H.; Ghaleb, B.N. Strengthening of initially loaded reinforced concrete beams using frp plates. ACI Struct. J. 1994, 91, 160–168. [Google Scholar]
- Wei, A.; Saadatmanesh, H.; Ehsani, M.R. RC beams strengthened with FRP plates. II: Analysis and parametric study. J. Struct. Eng. ASCE 1991, 117, 3434–3455. [Google Scholar]
- Triantafillou, T.C.; Plevris, N. Strengthening of RC beams with epoxy-bonded fibre-composite materials. Mater. Struct. 1992, 25, 201–211. [Google Scholar] [CrossRef]
- Roberts, T.M. Approximate analysis of shear and normal stress concentrations in the adhesive layer of plated RC beams. Struct. Eng. 1989, 67, 229–233. [Google Scholar]
- Roberts, T.M.; Haji-Kazemi, H. Theoretical study of the behaviour of reinforced concrete beams strengthened by externally bonded steel plates. Proc. Inst. Civ. Eng. 1989, 87, 39–55. [Google Scholar] [CrossRef]
- Van Gemert, D.; Maesschalck, R. Structural repair of a reinforced concrete plate by epoxy bonded external reinforcement. Int. J. Cem. Compos. Lightweight Concr. 1983, 5, 247–255. [Google Scholar] [CrossRef]
- Jones, R.; Swamy, R.N.; Bloxham, J.; Bouderbalah, A. Composite behaviour of concrete beams with epoxy bonded external reinforcement. Int. J. Cem. Compos. Lightweight Concr. Lond. 1980, 2, 91–107. [Google Scholar]
- Gribniak, V.; Misiunaite, I.; Rimkus, A.; Sokolov, A.; Šapalas, A. Deformations of FRP–concrete composite beam: Experiment and numerical analysis. Appl. Sci. 2019, 9, 5164. [Google Scholar] [CrossRef] [Green Version]
- Sharaky, I.A.; Baena, M.; Barrisa, C.; Sallam, H.E.M.; Torres, L. Effect of axial stiffness of NSM FRP reinforcement and concrete cover confinement on flexural behaviour of strengthened RC beams: Experimental and numerical study. Eng. Struct. 2018, 173, 987–1001. [Google Scholar] [CrossRef]
- Gribniak, V.; Ng, P.-L.; Tamulenas, V.; Misiūnaitė, I.; Norkus, A.; Šapalas, A. Strengthening of fibre reinforced concrete elements:: Synergy of the fibres and external sheet. Sustainability 2019, 11, 4456. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, V.A.; Galeota, D.; Giammatteo, M.M. Local bond stress-slip relationships of glass fibre reinforced plastic bars embedded in concrete. Mater. Struct. 1995, 28, 340–344. [Google Scholar] [CrossRef]
- Chajes, M.J.; Finch, W.W.; Januszka, T.F.; Thomson, T.A. Bond and Force Transfer of Composite-Material Plates Bonded to Concrete. ACI Struct. J. 1996, 93, 209–217. [Google Scholar]
- Ferracuti, B.; Savoia, M.; Mazzotti, C. Interface law for FRP–concrete delamination. Compos. Struct. 2007, 80, 523–531. [Google Scholar] [CrossRef]
- Thurner, S.; Hanel, R.; Klimek, P. Introduction to the Theory of Complex Systems; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Kaw, A.K. Mechanics of Composite Materials; Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN: 1420058290, 9781420058291. [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials; Taylor and Francis: Philadelphia, PA, USA, 1999; ISBN: 156032712X, 9781560327127. [Google Scholar]
- Zhelyazov, T. Strengthening of Reinforced Concrete Structures by Adhesively Bonded Composite Materials, Behavior of Structures Subjected to Bending. Ph.D. Thesis, University of Reims, Reims, France, 2008. [Google Scholar]
- Ortiz, M. A constitutive theory for the inelastic behavior of concrete. Mech. Mater. 1985, 4, 67–93. [Google Scholar] [CrossRef]
- Lemaître, J.; Dasmorat, R. Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Marigo, J.J. Damage Law Formulation for an Elastic Material. Proc. Acad. Sci. Paris French 1981, 292, 1309–1312. [Google Scholar]
- Mazars, J.J. Damage mechanics application to nonlinear response and failure behavior of structural concrete. Master’s Thesis, Paris 6 University, Paris, France, 1984. [Google Scholar]
- Prisco, M.; Mazars, J. Crush-Crack: A non-local damage model for concrete. Mech. Cohesive-Frict. Mater. 1996, 1, 321–347. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: New York, NY, USA, 1983. [Google Scholar]
- Rice, J.R. Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In Constitutive Equations in Plasticity; Argon, A., Ed.; MIT Press: Cambridge, MA, USA, 1975; pp. 23–79. [Google Scholar]
- Lemaitre, J. A Course on Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Eem, S.-H.; Jung, H.-J.; Koo, J.-H. Modeling of Magneto-Rheological Elastomers for Harmonic Shear Deformation. IEEE Trans. Magn. 2012, 48, 3080–3083. [Google Scholar] [CrossRef]
- Daugevičius, M.; Valivonis, J.; Skuturna, T. Prediction of Deflection of Reinforced Concrete Beams Strengthened with Fiber Reinforced Polymer. Materials 2019, 12, 1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. I: Review of debonding strength models. Eng. Struct. 2002, 24, 385–395. [Google Scholar] [CrossRef]
- Yin, Y.; Fan, Y. Influence of Roughness on Shear Bonding Performance of CFRP-Concrete Interface. Materials 2018, 11, 1875. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Li, S.; Lu, Y.; Yang, T. Reliability Analysis of Bond Behaviour of CFRP–Concrete Interface under Wet–Dry Cycles. Materials 2018, 11, 741. [Google Scholar] [CrossRef] [Green Version]
Ex | Ey = Ez | υxy = υxz | υyz | Gxz |
---|---|---|---|---|
(MPa) | (MPa) | - | - | (MPa) |
120,000 | 27,800 | 0.35 | 0.18 | 4860 |
Material | Material Symmetries | Constitutive Law |
---|---|---|
Concrete | Isotropy | Elasticity coupled with damage |
Steel | Isotropy | Bilinear kinematic hardening |
CFRP | Transverse isotropy | Linear elasticity |
Component | Element Type | Element # | Node # |
---|---|---|---|
Concrete | SOLID 95 | 158,717 | 238,920 |
Steel | SOLID 95 | 4604 | 35,053 |
Adhesive layer | SOLID 95 | 1890 | 14,228 |
CFRP | SOLID 186 | 1890 | 14,868 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhelyazov, T. Structural Materials: Identification of the Constitutive Models and Assessment of the Material Response in Structural Elements Strengthened with Externally-Bonded Composite Material. Materials 2020, 13, 1272. https://doi.org/10.3390/ma13061272
Zhelyazov T. Structural Materials: Identification of the Constitutive Models and Assessment of the Material Response in Structural Elements Strengthened with Externally-Bonded Composite Material. Materials. 2020; 13(6):1272. https://doi.org/10.3390/ma13061272
Chicago/Turabian StyleZhelyazov, Todor. 2020. "Structural Materials: Identification of the Constitutive Models and Assessment of the Material Response in Structural Elements Strengthened with Externally-Bonded Composite Material" Materials 13, no. 6: 1272. https://doi.org/10.3390/ma13061272
APA StyleZhelyazov, T. (2020). Structural Materials: Identification of the Constitutive Models and Assessment of the Material Response in Structural Elements Strengthened with Externally-Bonded Composite Material. Materials, 13(6), 1272. https://doi.org/10.3390/ma13061272