Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of SbSI Nanowires
2.2. Additional Purification Procedure
2.3. Characterization of the Catalysts
2.4. Piezo- and Photocatalysis Experiments
3. Results and Discussion
3.1. Material Characterization
3.2. Piezo- and Photocatalytic Performance of SbSI Nanowires
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Y.; Gai, L.; Ma, W.; Jiang, H.; Peng, X.; Zhao, L. Ultrasound-assisted catalytic degradation of Methyl orange with Fe3O4/polyaniline in near neutral solution. Ind. Eng. Chem. Res. 2015, 54, 2279–2289. [Google Scholar] [CrossRef]
- Starr, M.B.; Wang, X. Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Sci. Rep. 2013, 3, 2160. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.B.; Wang, X. Coupling of piezoelectric effect with electrochemical processes. Nano Energy 2015, 14, 296–311. [Google Scholar] [CrossRef]
- Pan, L.; Sun, S.; Chen, Y.; Wang, P.; Wang, J.; Zhang, X.; Zou, J.-J.; Wang, Z.L. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 2020, 10, 2000214. [Google Scholar] [CrossRef]
- Starr, M.B.; Shi, J.; Wang, X. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 2012, 51, 5962–5966. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Zhao, J.; Zhang, Z.; Li, X.; Zhang, J. Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications. ACS Appl. Nano Mater. 2020, 3, 1063–1079. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019, 241, 256–269. [Google Scholar] [CrossRef]
- Jina, C.; Liu, D.; Hu, J.; Wang, Y.; Zhang, Q.; Lv, L.; Zhuge, F. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater. Nano Energy 2019, 59, 372–379. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51. [Google Scholar] [CrossRef]
- Yuan, B.W.; Wu, J.; Qin, N.; Lin, E.Z.; Bao, D.H. Enhanced piezocatalytic performance of (Ba,Sr)TiO3 nanowires to degrade organic pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Q.; Lin, E.; Yuan, B.; Qin, N.; Thatikonda, S.K.; Bao, D. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3. ACS Appl. Mater. Interfaces 2018, 10, 17842–17849. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Wang, K.; Wang, Z.; Huang, H.; Zhang, G. Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. Ultrason. Sonochem. 2020, 61, 104819. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Jia, Y.; Wu, Z.; Xu, X.; Qian, W.; Xia, Y.; Ismail, M. Strong piezo-electrochemical effect of multiferroic BiFeO3 square microsheets for mechanocatalysis. Electrochem. Commun. 2017, 79, 55–58. [Google Scholar] [CrossRef]
- Kang, Z.; Qin, N.; Lin, E.; Wu, J.; Yuan, B.; Bao, D. Effect of Bi2WO6 nanosheets on the ultrasonic degradation of organic dyes: Roles of adsorption and piezocatalysis. J. Clean. Prod. 2020, 261, 121125. [Google Scholar] [CrossRef]
- Wu, J.M.; Chang, W.E.; Chang, Y.T.; Chang, C.-K. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single and few-layers MoS2 nanoflowers. Adv. Mater. 2016, 28, 3718–3725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liu, Z.; Xie, B.; Lu, J.; Guo, K.; Ke, S.; Shu, L.; Fan, H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B Environ. 2020, 279, 119353. [Google Scholar] [CrossRef]
- Kateshali, A.F.; Soleimannejad, J. Synthesis of crystalline NiO nanorodes from a new Ni(II) nanocoordination compound and its application in sonocatalytic dye removal. Mater. Res. Express 2019, 6, 115065. [Google Scholar] [CrossRef]
- Jin, C.; Liu, D.; Li, M.; Wang, Y.; He, Z.; Xu, M.; Li, X.; Ying, H.; Wu, Y.; Zhang, Q. Preparation of multifunctional PLZT nanowires and their applications in piezocatalysis and transparent flexible films. J. Alloys Compd. 2019, 811, 152063. [Google Scholar] [CrossRef]
- Nie, Q.; Xie, Y.; Ma, J.; Wang, J.; Zhang, G. High piezoecatalytic activity of ZnO/Al2O3 nanosheets utilizing ultrasonic energy for wastewater treatment. J. Clean. Prod. 2020, 242, 118532. [Google Scholar] [CrossRef]
- You, H.; Wu, Z.; Jia, Y.; Xu, X.; Xia, Y.; Han, Z.; Wang, Y. High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. Chemosphere 2017, 183, 528–535. [Google Scholar] [CrossRef]
- Fenga, W.; Yuan, J.; Zhang, L.; Hu, W.; Wu, Z.; Wang, X.; Huang, X.; Liu, P.; Zhang, S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B Environ. 2020, 277, 119250. [Google Scholar] [CrossRef]
- Biswas, A.; Saha, S.; Jana, N.R. ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants. ACS Appl. Nano Mater. 2019, 2, 1120–1128. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D. A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Grekov, A.A.; Danilova, S.P.; Zaks, P.L.; Kulieva, V.V.; Rubanov, L.A.; Syrkin, L.N.; Chekhunova, N.P.; El’gard, A.M. Piezoelectric elements made from antimony sulphoiodide crystals. Akust. Zurnal 1973, 19, 622–623. [Google Scholar]
- Hamano, K.; Nakamura, T.; Ishibashi, Y.; Ooyane, T. Piezoelectric property of SbSI single crystal. J. Phys. Soc. Jpn. 1965, 20, 1886–1887. [Google Scholar] [CrossRef]
- Nowak, M.; Mroczek, P.; Duka, P.; Kidawa, A.; Szperlich, P.; Grabowski, A.; Szala, J.; Moskal, G. Using of textured polycrystalline SbSI in actuators. Sens. Actuators A 2009, 150, 251–256. [Google Scholar] [CrossRef]
- Purusothaman, Y.; Alluri, N.R.; Chandrasekhar, A.; Kim, S.-J. Photoactive piezoelectric energy harvester driven by antimony sulfoiodide (SbSI): A AVBVICVII class ferroelectric-semiconductor compound. Nano Energy 2018, 50, 256–265. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D.; Paszkiewicz, R. SbSI nanowires for ferroelectric generators operating under shock pressure. Mater. Lett. 2016, 180, 15–18. [Google Scholar] [CrossRef]
- Toroń, B.; Szperlich, P.; Kozioł, M. SbSI composites based on epoxy resin and cellulose for energy harvesting and sensors—The influence of SBSI nanowires conglomeration on piezoelectric properties. Materials 2020, 13, 902. [Google Scholar] [CrossRef]
- Mistewicz, K.; Matysiak, W.; Jesionek, M.; Jarka, P.; Kępińska, M.; Nowak, M.; Tański, T.; Stróż, D.; Szade, J.; Balin, K.; et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires. Appl. Surf. Sci. 2020, 517, 146138. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D.; Guiseppi-Elie, A. Ferroelectric SbSI nanowires for ammonia detection at a low temperature. Talanta 2018, 189, 225–232. [Google Scholar] [CrossRef]
- Mistewicz, K. Recent advances in ferroelectric nanosensors: Toward sensitive detection of gas, mechanothermal signals, and radiation. J. Nanomater. 2018, 2018, 2651056. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Starczewska, A.; Jesionek, M.; Rzychoń, T.; Wrzalik, R.; Guiseppi-Elie, A. Determination of electrical conductivity type of SbSI nanowires. Mater. Lett. 2016, 182, 78–80. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, M.; Fang, Y.; Chen, G.; Li, Q.; Sheng, X.; Xu, X.; Hui, J.; Lan, Y.-Q.; Fang, M.; et al. SbSI nanocrystals: An excellent visible light photocatalyst with efficient generation of singlet oxygen. ACS Sustain. Chem. Eng. 2018, 6, 12166. [Google Scholar] [CrossRef]
- Muthusamy, T.; Bhattacharyya, A.J. Antimony sulphoiodide (SbSI), a narrow band-gap non-oxide ternary semiconductor with efficient photocatalytic activity. RSC Adv. 2016, 6, 105980–105987. [Google Scholar] [CrossRef]
- Tasviri, M.; Sajadi-Hezave, Z. SbSI nanowires and CNTs encapsulated with SbSI as photocatalysts with high visible-light driven photoactivity. Mol. Catal. 2017, 436, 174–181. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Paszkiewicz, R.; Guiseppi-Elie, A. SbSI nanosensors: From gel to single nanowire devices. Nanoscale Res. Lett. 2017, 12, 97. [Google Scholar] [CrossRef]
- Nowak, M.; Bober, Ł.; Borkowski, B.; Kępińska, M.; Szperlich, P.; Stróż, D.; Sozańska, M. Quantum efficiency coefficient for photogeneration of carriers in SbSI nanowires. Opt. Mater. 2013, 35, 2208–2216. [Google Scholar] [CrossRef]
- Antimony Sulfide Iodide, JCPDS-International Centre for Diffraction Data, PCPDFWIN v.2.1, Card File No. 75-0781. 2000.
- Nowak, M.; Nowrot, A.; Szperlich, P.; Jesionek, M.; Kępinska, M.; Starczewska, A.; Mistewicz, K.; Stróż, D.; Szala, J.; Rzychoń, T.; et al. Fabrication and characterization of SbSI gel for humidity sensors. Sens. Actuators A 2014, 210, 119–130. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1971. Available online: https://trove.nla.gov.au/version/45414559 (accessed on 3 August 2020).
- Al-Qaradawi, S.; Salman, S.R. Photocatalytic degradation of methyl orange as a model compound. J. Photochem. Photobiol. A 2002, 148, 161–168. [Google Scholar] [CrossRef]
- Chalastara, K.; Guo, F.; Elouatik, S.; Demopoulos, G.P. Tunable composition aqueous-synthesized mixed-phase TiO2 nanocrystals for photo-assisted water decontamination: Comparison of anatase, brookite and rutile photocatalysts. Catalysts 2020, 10, 407. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Z.B.; Feng, W.H.; Wang, K.Q.; Huang, X.Y.; Liu, P. Hydrogen production from pure water via piezoelectric-assisted visible-light photocatalysis of CdS nanorod arrays. ChemCatChem 2018, 10, 3397–3401. [Google Scholar] [CrossRef]
- Santos, H.M.; Lodeiro, C.; Capelo-Martínez, J.L. The power of ultrasound. In Ultrasound in Chemistry: Analytical Applications; Capelo-Martínez, J.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–16. [Google Scholar] [CrossRef]
- Doche, M.-L.; Hihn, J.-Y.; Mandroyan, A.; Viennet, R.; Touyeras, F. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media. Ultrason. Sonochem. 2003, 10, 357–362. [Google Scholar] [CrossRef]
- Lin, E.; Wu, J.; Qin, N.; Yuan, B.; Bao, D. Silver modified barium titanate as a highly efficient piezocatalyst. Catal. Sci. Technol. 2018, 8, 4788–4796. [Google Scholar] [CrossRef]
- Jin, C.C.; Liu, C.H.; Liu, X.C.; Wang, Y.; Hwang, H.L. Experimental and simulation study on BCTZ-based flexible energy harvesting device filled with Ag-coated Cu particles. Ceram. Int. 2018, 44, 17391. [Google Scholar] [CrossRef]
- Bi, Y.; Ouyang, S.; Umezawa, N.; Cao, J.; Ye, J. Facet effect of single-crystalline Ag3PO4 submicrocrystals on photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 6490–6492. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.L.; Li, G.; Kumar, S.; Yang, K.; Jin, R.C. Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv. Mater. 2014, 26, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, W.; Han, D.; Gan, S.; Dong, X.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Gao, X.; Yu, L.; Wang, Y.; Ning, J.; Xu, S.; Lou, X.W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013, 52, 5636–5639. [Google Scholar] [CrossRef]
- Xiang, G.; Li, T.; Zhuang, J.; Wang, X. Large-scale synthesis of metastable TiO2(B) nanosheets with atomic thickness and their photocatalytic properties. Chem. Commun. 2010, 46, 6801–6803. [Google Scholar] [CrossRef]
- Sheikh, M.U.D.; Naikoo, G.A.; Thomas, M.; Bano, M.; Khan, F. Solar-assisted photocatalytic reduction of methyl orange azo dye over porous TiO2 nanostructures. New J. Chem. 2016, 40, 5483–5494. [Google Scholar] [CrossRef]
- Ghule, L.A.; Patil, A.A.; Sapnar, K.B.; Dhole, S.D.; Garadkar, K.M. Photocatalytic degradation of methyl orange using ZnO nanorods. Toxicol. Environ. Chem. 2011, 93, 623–634. [Google Scholar] [CrossRef]
- Sang, Y.; Zhao, Z.; Zhao, M.; Hao, P.; Leng, Y.; Liu, H. From UV to near-infrared, WS2 nanosheet: A novel photocatalyst for full solar light spectrum photodegradation. Adv. Mater. 2015, 27, 363–369. [Google Scholar] [CrossRef]
- Sun, M.; Li, D.; Li, W.; Chen, Y.; Chen, Z.; He, Y.; Fu, X. New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation. J. Phys. Chem. C 2008, 112, 18076–18081. [Google Scholar] [CrossRef]
- Wang, N.; Pan, Y.; Wu, S.; Zhang, E.; Dai, W. Fabrication of nanoporous copper with tunable ligaments and promising sonocatalytic performance by dealloying Cu–Y metallic glasses. RSC Adv. 2017, 7, 43255–43265. [Google Scholar] [CrossRef]
- Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason. Sonochem. 2014, 21, 53–59. [Google Scholar] [CrossRef]
- Dai, K.; Chen, H.; Peng, T.; Ke, D.; Yi, H. Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 2007, 69, 1361–1367. [Google Scholar] [CrossRef]
- Baiocchi, C.; Brussinoa, M.C.; Pramauro, E.; Prevot, A.B.; Palmisano, L.; Marci, G. Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry. Int. J. Mass Spectrom. 2002, 214, 247–256. [Google Scholar] [CrossRef]
Piezocatalyst | mp/mMO | f, kHz | P or Pd | t | η, % | k, min−1 | Year | Reference |
---|---|---|---|---|---|---|---|---|
BaTiO3 NWs | 200 | 40 | 120 W | 160 min | 95 | 0.0164 | 2019 | [8] |
BaTiO3 NWs | 200 | 40 | 80 W | 160 min | ~90 | ~0.017 | 2018 | [9] |
BaTiO3 NWs | 200 | 40 | 0.1 W/cm2 | 120 min | 79 | 0.0132 | 2018 | [10] |
BaTiO3 NPs | 200 | 40 | 80 W | - | - | 0.019 | 2018 | [11] |
BaTiO3 NPs | 200 | 40 | 480 W | 60 min | 65.1 | - | 2020 | this paper |
BaTiO3/Ag NPs | 200 | 40 | 120 W | 120 min | 81 | 0.0162 | 2018 | [47] |
Ba1−xSrxTiO3 NWs | 200 | 40 | 0.1 W/cm2 | 120 min | 100 | 0.0196 | 2018 | [10] |
BCTZ NWs | 200 | 40 | 120 W | 150 min | 65 | 0.0071 | 2018 | [48] |
PLZT NWs | 200 | 40 | 120 W | 160 min | 97 | 0.02 | 2019 | [18] |
PZT NWs | - | 40 | 120 W | - | - | 0.0155 | 2019 | [18] |
Na0.5K0.5NbO3 | 800 | 40 | - | 100 min | 77 | - | 2020 | [16] |
NiO NPs | 100 | 37 | 160 W | 60 min | 96 | - | 2019 | [17] |
ZnO@TiO2 NFs | 100 | 40 | - | 120 min | 60 | - | 2017 | [20] |
SbSI NWs | 200 | 20 | 750 W | 40 s | 99.5 | 7.6(5) | 2020 | this paper |
200 | 40 | 480 W | 45 s | 97.9 | 5.1(4) | |||
200 | 40 | 480 W | 45 s | 84.0 | 2.0(2) |
Photocatalyst | mph/mMO | Illumination | tph, s | η, % | k, min−1 | Year | Reference |
---|---|---|---|---|---|---|---|
Ag3PO4 | 250 | xenon lamp (300 W) | 240 | 98 | - | 2011 | [49] |
Ag2O/Ag2CO3 | 25 | halogen lamp (150 W) | 300 | 100 | 0.92 | 2013 | [50] |
AgBr/graphene | 240 | xenon lamp (500 W) | 480 | 100 | 0.72 | 2015 | [51] |
CdS/C | 50 | xenon lamp (500 W) | 2400 | 97 | - | 2013 | [52] |
TiO2 NSs | 71.4 | xenon lamp (300 W) | 2400 | 84 | - | 2010 | [53] |
TiO2 NPs | 20 | sunlight irradiation | 7200 | 98 | - | 2016 | [54] |
ZnO NRs | - | mercury lamp (125 W) | 4800 | 100 | - | 2011 | [55] |
WS2 NSs | 50 | mercury lamp (300 W) | 6000 | 96 | - | 2015 | [56] |
Sb2S3 | 25 | halogen lamp (500 W) | 1800 | 97 | - | 2008 | [57] |
SbSI NCs | 33.3 | xenon lamp (400 mW/cm2) | 10 | 99 | 25.2 | 2018 | [34] |
SbSI MRs | 50 | solar simulator (1.5G AM) | 1200 | 97 | 0.19 | 2016 | [35] |
SbSI NWs | 33.3 | UV lamp (300 W) | 160 | 95 | 9(1) | 2020 | this paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mistewicz, K.; Kępińska, M.; Nowak, M.; Sasiela, A.; Zubko, M.; Stróż, D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials 2020, 13, 4803. https://doi.org/10.3390/ma13214803
Mistewicz K, Kępińska M, Nowak M, Sasiela A, Zubko M, Stróż D. Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials. 2020; 13(21):4803. https://doi.org/10.3390/ma13214803
Chicago/Turabian StyleMistewicz, Krystian, Mirosława Kępińska, Marian Nowak, Agnieszka Sasiela, Maciej Zubko, and Danuta Stróż. 2020. "Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires" Materials 13, no. 21: 4803. https://doi.org/10.3390/ma13214803
APA StyleMistewicz, K., Kępińska, M., Nowak, M., Sasiela, A., Zubko, M., & Stróż, D. (2020). Fast and Efficient Piezo/Photocatalytic Removal of Methyl Orange Using SbSI Nanowires. Materials, 13(21), 4803. https://doi.org/10.3390/ma13214803