Liquid Regions of Lanthanum-Bearing Aluminosilicates
Abstract
:1. Introduction
2. Calculation Method and Experimental Procedure
3. Results and Discussion
3.1. Binary Phase Diagram of Al2O3-SiO2-La2O3 System
3.1.1. The SiO2-Al2O3 System
3.1.2. The La2O3-Al2O3 System
3.1.3. The La2O3-SiO2 System
3.2. Ternary Phase Diagram of Al2O3-SiO2-La2O3 System
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Erbe, E.M.; Day, D.E. Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications. J. Am. Ceram. Soc. 1990, 73, 2708–2713. [Google Scholar] [CrossRef]
- Kohli, J.T.; Shelby, J.E. Rare-earth aluminogermanate glasses. J. Am. Ceram. Soc. 1991, 74, 1031–1035. [Google Scholar] [CrossRef]
- Tanabe, S.; Hirao, K.; Soga, N. Elastic properties and molar volume of rare-earth aluminosilicate glasses. J. Am. Ceram. Soc. 1992, 75, 503–506. [Google Scholar] [CrossRef]
- Iftekhar, S.; Pahari, B.; Okhotnikov, K.; Jaworski, A.; Stevensson, B.; Grins, J.; Edén, M. Properties and structures of RE2O3-Al2O3-SiO2 (RE = Y, Lu) glasses probed by molecular dynamics simulations and solid-state NMR: The roles of aluminum and rare-earth ions for dictating the microhardness. J. Phys. Chem. 2012, 116, 18394–18406. [Google Scholar] [CrossRef]
- Mahapatra, M.K.; Lu, K. Seal glass for solid oxide fuel cells. J. Power Sources 2010, 195, 7129–7139. [Google Scholar] [CrossRef]
- Kohli, J.; Shelby, J. Formation and properties of rate earth aluminosilicate glasses. Phy. Chem. Glasses 1991, 32, 67–71. [Google Scholar]
- Kolitsch, U.; Scifert, H.; Aldinger, F. Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y and Sc). J. Phase Equilib. 1998, 19, 426–433. [Google Scholar] [CrossRef]
- Mazza, D.; Ronchetti, S. Study on the Al2O3-SiO2-La2O3 ternary system at 1300 °C. Mater. Res. Bull. 1999, 34, 1375–1382. [Google Scholar] [CrossRef]
- Bondar, I.A.; Galakhov, F.Y. Phase equilibria in the system Y2O3-SiO2-Al2O3. Bull. Acad. Sci. USSR Div. Chem. Sci. 1964, 13, 1231–1232. [Google Scholar] [CrossRef]
- Kolitsch, U.; Seifert, H.; Ludwig, T.; Aldinger, F. Phase equilibria and crystal chemistry in the Y2O3–Al2O3–SiO2 system. J. Mater. Sci. 1999, 14, 447–455. [Google Scholar] [CrossRef]
- Kolitsch, U.; Seifert, H.; Aldinger, F. Phase relationships in the system Gd2O3-Al2O3-SiO2. J. Alloys Compd. 1997, 257, 104–114. [Google Scholar] [CrossRef]
- Kolitsch, U. High Temperature Calorimetry and Phase Analysis in RE2O3-Al2O3-SiO2 Systems. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 1995. [Google Scholar]
- Colomban, P.; Mazerolles, L. SiO2-Al2O3 phase diagram and mullite non-stoichiometry of sol-gel prepared monoliths: Influence on mechanical properties. J. Mat. Sci. Lett. 1990, 9, 1077–1079. [Google Scholar] [CrossRef]
- Pons, A.; Béchade, E.; Jouin, J.; Colas, M.; Geffroy, P.M.; Masson, O.; Slodczyk, A. Structural modifications of lanthanum silicate oxyapatite exposed to high water pressure. J. Eur. Ceram. Soc. 2017, 37, 2149–2158. [Google Scholar] [CrossRef]
- Li, L.; Tang, Z.; Sun, W.; Wang, P. Phase diagram prediction of the Al2O3-SiO2-La2O3 system. J. Mater. Sci. Technol. 1999, 15, 439–443. [Google Scholar]
- Li, L.; Tang, Z.; Sun, W.; Wang, P. Phase diagram estimation of the Al2O3-SiO2-Gd2O3 system. Phys. Chem. Glasses B 1999, 140, 126–129. [Google Scholar]
- Li, L.; Tang, Z.; Sun, W.; Wang, P. Phase diagram estimation of the Al2O3-SiO2-RE2O3 systems. J. Shanghai Univ. 2000, 4, 72–80. [Google Scholar] [CrossRef]
- Iftekhar, S.; Grins, J.; Gunawidjaja, P.N.; Mattias, E. Glass formation and structure-property-composition relations of the RE2O3-Al2O3-SiO2 (RE= La, Y., Lu, Sc) systems. J. Am. Ceram. Soc. 2011, 94, 2429–2435. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A. Algebraic Representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. Res. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Pelton, A.D. A general “Geometric” thermodynamic model for multicomponent solutions. Calphad 2001, 25, 319–328. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 3rd ed.; VCH: Weinheim, Germany, 1995. [Google Scholar]
- Wu, P.; Pelton, A.D. Coupled thermodynamic phase diagram assessment of the rare earth oxide-aluminium oxide binary systems. J. Alloys Compd. 1992, 179, 259–287. [Google Scholar] [CrossRef]
- Chase, M.W. NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data 1998, 9, 158. [Google Scholar]
- Knacke, O.; Kubaschewski, O.; Hesselmann, K. Thermochemical Properties of Inorganic Substances; Springer: Berlin, Germany, 1991. [Google Scholar]
- Bolech, M.; Janssen, F.J.J.G.; Booij, A.S.; Cordfunke, E.H.P. The standard molar enthalpies of formation of β-La2Si2O7 and β-Ce2Si2O7. J. Chem. Thermodyn. 1996, 28, 1319–1324. [Google Scholar] [CrossRef]
- Bolech, M.E.; Cordfunke, H.P.; van Genderen, A.C.G.; van der Laan, R.R.; Janssen, F.J.J.G.; van Miltenburg, J.C. The heat capacity and derived thermodynamic functions of La2Si2O7 and Ce2Si2O7 from 4 to 1000 K. Thermochim. Acta 1996, 284, 253–261. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Liu, C.; Jiang, M. Thermodynamic assessment of RE2O3-SiO2 (RE = La, Ce) systems. Chin. Rare Earths 2016, 37, 9–13. [Google Scholar]
- DÖrner, P.; Gauckler, L.J.; Krieg, H.; Lukas, H.L.; Petzow, G.; Weiss, J. On the calculation and representation of multicomponent systems. Calphad 1979, 3, 241–257. [Google Scholar] [CrossRef]
- Ball, R.G.A.; Mignanelli, M.A.; Barry, T.I.; Gisby, J.A. The calculation of phase equilibria of oxide core-concrete systems. J. Nucl. Mater. 1993, 201, 238–249. [Google Scholar] [CrossRef]
- Eriksson, G.; Pelton, A.D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-Al2O3, Al2O3-SiO2, and CaO-Al2O3-SiO2 systems. Metall. Mater. Trans. B 1993, 24, 807–816. [Google Scholar] [CrossRef]
- Zaitsev, A.I.; Litvina, A.D.; Mogutnov, B.M.; Tsaplin, A.A. Thermodynamic properties and phase equilibria in the system CaO-SiO2-Al2O3. High Temp. Mater. Sci. 1995, 34, 223–231. [Google Scholar]
- Bowen, N.L.; Greig, J.W. The system: Al2O3. SiO2. J. Am. Ceram. Soc. 1924, 7, 238–254. [Google Scholar] [CrossRef]
- Aramaki, S.; Roy, R. Revised phase diagram for the system Al2O3-SiO2. J. Am. Ceram. Soc. 1962, 45, 229–242. [Google Scholar] [CrossRef]
- Klug, F.J.; Prochazka, S.; Doremus, R.H. Alumina-silica phase diagram in the mullite region. J. Am. Ceram. Soc. 1987, 70, 750–759. [Google Scholar] [CrossRef]
- Davis, R.F.; Pask, J.A. Diffusion and reaction studies in the system Al2O3-SiO2. J. Am. Ceram. Soc. 1972, 55, 525–531. [Google Scholar] [CrossRef]
- Toropov, N.A.; Galakhov, F.I. Solid solutions in the Al2O3-SiO2 system. Izv. Akad. Nauk SSSR Ser. Khim. 1958, 1, 8–11. [Google Scholar] [CrossRef]
- Björkvall, J.; Stolyarova, V.L. A mass spectrometric study of Al2O3-SiO2 melts using a knudsen cell. Rapid Commun. Mass Spectrom. 2001, 15, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Selleby, M.; Sundman, B. Phase equilibria and thermodynamics in the Al2O3-SiO2 system-modeling of mullite and liquid. J. Am. Ceram. Soc. 2005, 88, 2544–2551. [Google Scholar] [CrossRef]
- MacDowell, J.F.; Beal, G.H. Immiscibility and crystallization in Al2O3-SiO2 glasses. J. Am. Ceram. Soc. 1969, 52, 17–25. [Google Scholar] [CrossRef]
- Bondar, I.A.; Vinogradova, N.V. Phase equilibria in the lanthanum oxide-alumina system. Russ. Chem. Bull. 1964, 13, 737–741. [Google Scholar] [CrossRef]
- Mizuno, M.; Berjoan, R.; Coutures, J.P.; Foex, M. Phase diagram of the system Al2O3-La2O3 at elevated temperature. Yogyo Kyokaishi 1974, 82, 631–636. [Google Scholar]
- Fritsche, E.T.; Tensmeyer, L.G. Liquidus in the alumina-rich system La2O3-Al2O3. J. Am. Ceram. Soc. 1967, 50, 167–168. [Google Scholar] [CrossRef]
- Rolin, M.; Thanh, P.H. Les diagrammes de phases des mélanges ne réagissant pas avec le molybdène. Revue des Hautes Températures et Réfractaires 1965, 2, 175–185. [Google Scholar]
- Kim, S.S.; Park, J.Y.; Sanders, T.H. Thermodynamic modeling of the miscibility gaps and the metastability in the R2O3-SiO2 systems (R= La, Sm, Dy, and Er). J. Alloys Compd. 2001, 321, 84–90. [Google Scholar] [CrossRef]
- Toropov, N.A.; Bondar, I.A.; Galakhov, F.J. High-temperature solid solutions of silicates of the rare earth elements. In Proceedings of the Transaction of the 8th International Ceramic Congress, Copenhagen, Denmark, 14–19 May 1962; pp. 85–103. [Google Scholar]
- Bondar, I.A. Rare-earth silicates. Ceram. Int. 1982, 8, 83–89. [Google Scholar] [CrossRef]
- Tas, A.C.; Akinc, M. Phase relations in the system Al2O3-Ce2Si2O7 in the temperature range 900 °C to 1925 °C in inert atmosphere. J. Am. Ceram. Soc. 1993, 76, 1595–1601. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Zhang, T.; Jiang, M.; Peng, C. Thermodynamic assessment of Al2O3-SiO2-Ce2O3 system. Metall. Res. Technol. 2017, 114, 304. [Google Scholar] [CrossRef]
Formula | Phase | Cp = A + B·10−3 T + C·105 T−2 + D·10−6 T2 (J·mol−1·K−1) | Applicable Temperature | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | (K) | ||||
La2O3 | S [21] | −1793.702 | 127.319 | 119.733 | 14.225 | −13.506 | - | 298–2553 |
L [22] | −1728.858 | 152.423 | 119.729 | 14.230 | −13.500 | - | 2553–3000 | |
Al2O3 | S [21] | −1675.692 | 50.936 | 109.909 | 22.065 | −33.284 | −4.085 | 298–2327 |
L [23] | −1596.533 | 43.569 | 192.464 | - | - | - | 2327–3000 | |
SiO2 | S [21] | −910.857 | 41.463 | 72.923 | 1.148 | −41.848 | 0.036 | 298–1996 |
L [21] | −906.604 | 51.029 | 85.772 | - | - | - | 1996–3000 | |
LaAlO3 | S [24] | −1794.300 | 85.936 | 111.010 | 13.481 | −21.129 | - | 800–1500 |
LaAl11O18 | S [22] | −10,107.591 | 383.296 | 697.843 | 103.054 | −258.334 | −19.660 | 298–2201 |
La33Al7O60 | S [22] | −35,652.907 | 2404.150 | 2381.521 | 295.843 | −382.856 | −12.510 | 298–2161 |
La2Si2O7 | S [25,26] | −3815.699 | 210.271 | 220.760 | 72.124 | −41.832 | −0.029 | 298–1000 |
La2SiO5 | S * | −2853.310 | 168.782 | 182.9117 | 27.278 | −33.6 | - | 298–3000 |
La4.67Si3O13 | S * | −7302.500 | 421.467 | 463.165 | 73.192 | −86.8 | - | 298–3000 |
Li = a + bT | - | L0 | L1 | L2 | L3 |
---|---|---|---|---|---|
Al2O3-SiO2 | a | 19,570.28 | 14,875.48 | 5640.02 | - |
b | −10.49 | −0.71 | 1.21 | - | |
La2O3-Al2O3 | a | −129,195.34 | −15,094.54 | 393,830.17 | - |
b | −26.05 | 0.72 | −176.58 | - | |
La2O3-SiO2 | a | −352,587.83 | −119,125.74 | 513,748.94 | 435,926.54 |
b | 78.86 | 22.64 | −211.27 | −166.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, T.; Feng, Y.; Liu, C.; Jiang, M. Liquid Regions of Lanthanum-Bearing Aluminosilicates. Materials 2020, 13, 450. https://doi.org/10.3390/ma13020450
Li Y, Zhang T, Feng Y, Liu C, Jiang M. Liquid Regions of Lanthanum-Bearing Aluminosilicates. Materials. 2020; 13(2):450. https://doi.org/10.3390/ma13020450
Chicago/Turabian StyleLi, Yandong, Tongsheng Zhang, Yefeng Feng, Chengjun Liu, and Maofa Jiang. 2020. "Liquid Regions of Lanthanum-Bearing Aluminosilicates" Materials 13, no. 2: 450. https://doi.org/10.3390/ma13020450
APA StyleLi, Y., Zhang, T., Feng, Y., Liu, C., & Jiang, M. (2020). Liquid Regions of Lanthanum-Bearing Aluminosilicates. Materials, 13(2), 450. https://doi.org/10.3390/ma13020450