Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Microspheres
2.3. Characterization of Microspheres
3. Results and Discussion
3.1. Optimization of the EG:H2O Ratio
3.2. Optimization of Time of Synthesis
3.3. Synthesis of Cu2(Mn1−xFex)SnS4 Solid Solution Series
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, H.C.; Dai, P.C.; Feng, Z.Y.; Fan, W.L.; Zhan, J.H. Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J. Mater. Chem. 2012, 22, 7502–7506. [Google Scholar] [CrossRef]
- Hsu, W.; Sutter-Fella, C.M.; Hettick, M.; Cheng, L.T.; Chan, S.W.; Chen, Y.F.; Zeng, Y.P.; Zheng, M.; Wang, H.P.; Chiang, C.C.; et al. Electron-Selective TiO2 Contact for Cu(In,Ga)Se2 Solar Cells. Sci. Rep. 2015, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Ford, G.M.; Yang, W.C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell with Record Efficiency of 23.35%. IEEE J. Photovolt. 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Katagiri, H.; Jimbo, K.; Maw, W.S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A. Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517, 2455–2460. [Google Scholar] [CrossRef]
- Tanaka, K.; Oonuki, M.; Moritake, N.; Uchiki, H. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol. Energy Mater. Sol.Cells 2009, 93, 583–587. [Google Scholar] [CrossRef]
- Weber, A.; Schmidt, S.; Abou-Ras, D.; Schubert-Bischoff, P.; Denks, I.; Mainz, R.; Schock, H.W. Texture inheritance in thin-film growth of Cu2ZnSnS4. Appl. Phys. Lett. 2009, 95, 3. [Google Scholar] [CrossRef]
- Guo, Q.J.; Hillhouse, H.W.; Agrawal, R. Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. J. Am. Chem. Soc. 2009, 131, 11672. [Google Scholar] [CrossRef]
- Steinhagen, C.; Panthani, M.G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B.A. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics. J. Am. Chem. Soc. 2009, 131, 12554. [Google Scholar] [CrossRef]
- Shavel, A.; Arbiol, J.; Cabot, A. Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y. J. Am. Chem. Soc. 2010, 132, 4514. [Google Scholar] [CrossRef]
- Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J.H. Determination of band gap energy (E-g) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values. Appl. Phys. Lett. 2010, 97, 3. [Google Scholar] [CrossRef]
- Todorov, T.K.; Reuter, K.B.; Mitzi, D.B. High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber. Adv. Mater. 2010, 22, E156. [Google Scholar] [CrossRef] [PubMed]
- Balaz, P.; Balaz, M.; Zorkovska, A.; Skorvanek, I.; Bujnakova, Z.; Trajic, J. Kinetics of Solid-State Synthesis of Quaternary Cu2FeSnS4 (Stannite) Nanocrystals for Solar Energy Applications. Acta Phys. Pol. A 2017, 131, 1153–1155. [Google Scholar] [CrossRef]
- Oueslati, H.; Ben Rabeh, M.; Kanzari, M. Growth and Characterization of the Evaporated Quaternary Absorber Cu2FeSnS4 for Solar Cell Applications. J. Electron. Mater. 2018, 47, 3577–3584. [Google Scholar] [CrossRef]
- Siebentritt, S. Why are kesterite solar cells not 20% efficient? Thin Solid Films 2013, 535, 1–4. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Guan, H.; Yu, F. Flower-like Cu2MnSnS4 particles synthesized via microwave irradiation method. Chalcogenide Lett. 2015, 12, 99–103. [Google Scholar]
- Nie, L.Y.; Yang, J.D.; Yang, D.D.; Liu, S. Effect of substrate temperature on growth and properties of Cu2MnSnS4 thin films prepared by chemical spray pyrolysis. J. Mater. Sci.-Mater. Electron. 2019, 30, 3760–3766. [Google Scholar] [CrossRef]
- Ai, L.H.; Jiang, J. Hierarchical porous quaternary Cu-Fe-Sn-S hollow chain microspheres: Rapid microwave nonaqueous synthesis, growth mechanism, and their efficient removal of organic dye pollutant in water. J. Mater. Chem. 2012, 22, 20586–20592. [Google Scholar] [CrossRef]
- Ai, L.H.; Jiang, J. Self-sacrificial templating synthesis of porous quaternary Cu-Fe-Sn-S semiconductor nanotubes via microwave irradiation. Nanotechnology 2012, 23, 9. [Google Scholar] [CrossRef]
- An, C.H.; Tang, K.B.; Shen, G.Z.; Wang, C.R.; Huang, L.Y.; Qian, Y.T. The synthesis and characterization of nanocrystalline Cu- and Ag-based multinary sulfide semiconductors. Mater. Res. Bull. 2003, 38, 823–830. [Google Scholar] [CrossRef]
- Yan, C.; Huang, C.; Yang, J.; Liu, F.Y.; Liu, J.; Lai, Y.Q.; Li, J.; Liu, Y.X. Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chem. Commun. 2012, 48, 2603–2605. [Google Scholar] [CrossRef] [PubMed]
- Fontane, X.; Izquierdo-Roca, V.; Saucedo, E.; Schorr, S.; Yukhymchuk, V.O.; Valakh, M.Y.; Perez-Rodriguez, A.; Morante, J.R. Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4. J. Alloys Compd. 2012, 539, 190–194. [Google Scholar] [CrossRef]
- Gui, Z.; Fan, R.; Chen, X.H.; Hu, Y.; Wang, Z.Z. A new colloidal precursor cooperative conversion route to nanocrystalline quaternary copper sulfide. Mater. Res. Bull. 2004, 39, 237–241. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, W.; Tan, R.; Song, W.; Chen, J. Solvothermal synthesis of highly crystallized quaternary chalcogenide Cu2FeSnS4 particles. Mater. Lett. 2013, 102, 39–42. [Google Scholar] [CrossRef]
- Khadka, D.B.; Kim, J. Structural, optical and electrical properties of Cu2FeSnX4 (X = S, Se) thin films prepared by chemical spray pyrolysis. J. Alloys Compd. 2015, 638, 103–108. [Google Scholar] [CrossRef]
- Meng, X.; Deng, H.; He, J.; Zhu, L.; Sun, L.; Yang, P.; Chu, J. Synthesis of Cu2FeSnSe4 thin film by selenization of RF magnetron sputtered precursor. Mater. Lett. 2014, 117, 1–3. [Google Scholar] [CrossRef]
- Meng, X.; Deng, H.; He, J.; Sun, L.; Yang, P.; Chu, J. Synthesis, structure, optics and electrical properties of Cu2FeSnS4 thin film by sputtering metallic precursor combined with rapid thermal annealing sulfurization process. Mater. Lett. 2015, 151, 61–63. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Nguyen Huu, L.; Kumar, M.H.; Boix, P.P.; Juan, S.; John, R.A.; Batabyal, S.K.; Wong, L.H. Facile Water-based Spray Pyrolysis of Earth-Abundant Cu2FeSnS4 Thin Films as an Efficient Counter Electrode in Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 17661–17667. [Google Scholar] [CrossRef]
- Wang, W.; Shen, H.L.; Yao, H.Y.; Li, J.Z. Preparation and properties of Cu2FeSnS4 nanocrystals by ultrasound-assisted microwave irradiation. Mater. Lett. 2014, 125, 183–186. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, M.; Li, L.; Sun, Y.; Shen, Y.; Wang, L. Facile synthesis of Cu2FeSnSe4 sheets with a simple solvothermal method. Mater. Lett. 2013, 93, 111–114. [Google Scholar] [CrossRef]
- Zhou, J.; Ye, Z.; Wang, Y.; Yi, Q.; Wen, J. Solar cell material Cu2FeSnS4 nanoparticles synthesized via a facile liquid reflux method. Mater. Lett. 2015, 140, 119–122. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, H.M.; Tao, J.H.; Zhou, W.L.; Sun, L.; Yue, F.Y.; Yang, P.X.; Chu, J.H. Influence of annealing temperature on structural and optical properties of Cu2MnSnS4 thin films fabricated by sol-gel. J. Alloys Compd. 2015, 640, 23–28. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, H.M.; Tao, J.H.; Cao, H.Y.; Sun, L.; Yang, P.X.; Chu, J.H. Strategic improvement of Cu2MnSnS4 films by two distinct post annealing processes for constructing thin film solar cells. Acta Mater. 2016, 109, 1–7. [Google Scholar] [CrossRef]
- Le Donne, A.; Marchionna, S.; Acciarri, M.; Cernuschi, F.; Binetti, S. Relevant efficiency enhancement of emerging Cu2MnSnS4 thin film solar cells by low temperature annealinge. Sol. Energy 2017, 149, 125–131. [Google Scholar] [CrossRef]
- Marchionna, S.; Le Donne, A.; Merlini, M.; Binetti, S.; Acciarri, M.; Cernuschi, F. Growth of Cu2MnSnS4 PV absorbers by sulfurization of evaporated precursors. J. Alloys Compd. 2017, 693, 95–102. [Google Scholar] [CrossRef]
- Prabhakar, R.R.; Su, Z.H.; Xin, Z.; Baikie, T.; Woei, L.S.; Shukla, S.; Batabyal, S.K.; Gunawan, O.; Wong, L.H. Photovoltaic effect in earth abundant solution processed Cu2MnSnS4 and Cu2MnSn(S,Se)4 thin films. Sol. Energy Mater. Sol. Cells 2016, 157, 867–873. [Google Scholar] [CrossRef]
- Yan, X.; Michael, E.; Komarneni, S.; Brownson, J.R.; Yan, Z.F. Microwave-hydrothermal/solvothermal synthesis of kesterite, an emerging photovoltaic material. Ceram. Int. 2014, 40, 1985–1992. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Ni, Z.; Fang, G.; Tao, W. One-step sonochemical synthesis route towards kesterite Cu2ZnSnS4 nanoparticles. J. Alloys Compd. 2015, 630, 23–28. [Google Scholar] [CrossRef]
- Tiong, V.T.; Zhang, Y.; Bell, J.; Wang, H.X. Phase-selective hydrothermal synthesis of Cu2ZnSnS4 nanocrystals: The effect of the sulphur precursor. Crystengcomm 2014, 16, 4306–4313. [Google Scholar] [CrossRef]
- Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Barahona, P.; Pena, O. Magnetic properties and crystal structure of solid-solution Cu2MnxFe1−xSnS4 chalcogenides with stannite-type structure. Phys. Status Solidi B-Basic Solid State Phys. 2014, 251, 958–964. [Google Scholar] [CrossRef]
- Marciniak, H.; Diduszko, R.; Kozak, M. XRAYAN - Program do rentgenowskiej analizyfazowej (in Polish); KOMA: Warszawa, Poland, 2006. [Google Scholar]
- Liang, X.L.; Guo, P.; Wang, G.; Deng, R.P.; Pan, D.C.; Wei, X.H. Dilute magnetic semiconductor Cu2MnSnS4 nanocrystals with a novel zincblende and wurtzite structure. RSC Adv. 2012, 2, 5044–5046. [Google Scholar] [CrossRef]
- Li, Z.G.; Lui, A.L.K.; Lam, K.H.; Xi, L.F.; Lam, Y.M. Phase-Selective Synthesis of Cu2ZnSnS4 Nanocrystals using Different Sulfur Precursors. Inorg. Chem. 2014, 53, 10874–10880. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Su, X.; Jiang, J. Phase-Controlled Synthesis of Cu2ZnSnS4 Nanocrystals: The Role of Reactivity between Zn and S. J. Am. Chem. Soc. 2013, 135, 18377–18384. [Google Scholar] [CrossRef] [PubMed]
- Whiffen, R.M.K.; Jovanovic, D.J.; Antic, Z.; Bartova, B.; Milivojevic, D.; Dramicanin, M.D.; Brik, M.G. Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route. J. Lumin. 2014, 146, 133–140. [Google Scholar] [CrossRef]
- Patel, M.; Mukhopadhyay, I.; Ray, A. Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J. Phys. D-Appl. Phys. 2012, 45, 10. [Google Scholar] [CrossRef]
- Neto, N.F.A.; Oliveira, Y.G.; Bomio, M.R.D.; Motta, F.V. Synthesis and Characterization of Co2+ and Mn2+ Codoped ZnO Nanoparticles Obtained by the Sonochemical Method: Photocatalytic and Antimicrobial Properties. J. Electron. Mater. 2019, 48, 5900–5905. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Le, A.D.; Vu, T.B.; Lam, Q.V. Investigations on photoluminescence enhancement of poly(vinyl alcohol) encapsulated Mn-doped ZnS quantum dots. J. Lumin. 2017, 192, 166–172. [Google Scholar] [CrossRef]
- Rawat, K.; Shishodia, P.K. Structural and optical properties of sol gel derived Cu2ZnSnS4 nanoparticles. Adv. Powder Technol. 2017, 28, 611–617. [Google Scholar] [CrossRef]
- Chirita, P.; Descostes, M.; Schlegel, M.L. Oxidation of FeS by oxygen-bearing acidic solutions. J. Colloid Interface Sci. 2008, 321, 84–95. [Google Scholar] [CrossRef]
- Digraskar, R.V.; Sapner, V.S.; Narwade, S.S.; Mali, S.M.; Ghule, A.V.; Sathe, B.R. Enhanced electrocatalytic hydrogen generation from water via cobalt-doped Cu2ZnSnS4 nanoparticles. RSC Adv. 2018, 8, 20341–20346. [Google Scholar] [CrossRef]
- Zaberca, O.; Oftinger, F.; Chane-Ching, J.Y.; Datas, L.; Lafond, A.; Puech, P.; Balocchi, A.; Lagarde, D.; Marie, X. Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers. Nanotechnology 2012, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, P.; Song, X.F.; Gao, L. Sol-gel nanocasting synthesis of kesterite Cu2ZnSnS4 nanorods. RSC Adv. 2015, 5, 1220–1226. [Google Scholar] [CrossRef]
- Gurel, T.; Sevik, C.; Cagin, T. Characterization of vibrational and mechanical properties of quaternary compounds Cu2ZnSnS4 and Cu2ZnSnSe4 in kesterite and stannite structures. Phys. Rev. B 2011, 84, 7. [Google Scholar] [CrossRef]
- Trajic, J.; Romcevic, M.; Petrovic, M.; Gilic, M.; Balaz, P.; Zorkovska, A.; Romcevic, N. Optical properties of the mechanochemically synthesized Cu2FeSnS4 (stannite) nanocrystals: Raman study. Opt. Mater. 2018, 75, 314–318. [Google Scholar] [CrossRef]
- Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Gonzales, G. Crystal structure and Raman scattering characterization of Cu2Fe1−xCoxSnS4 chalcogenide compounds. Solid State Sci. 2015, 49, 54–60. [Google Scholar] [CrossRef]
- Havryliuk, Y.; Valakh, M.Y.; Dzhagan, V.; Greshchuk, O.; Yukhymchuk, V.; Raevskaya, A.; Stroyuk, O.; Selyshchev, O.; Gaponik, N.; Zahn, D.R.T. Raman characterization of Cu2ZnSnS4 nanocrystals: Phonon confinement effect and formation of CuxS phases. RSC Adv. 2018, 8, 30736–30746. [Google Scholar] [CrossRef]
Cu | Mn | Fe | Sn | S | Estimated | Nominal |
---|---|---|---|---|---|---|
26.51 | 26.44 | 0.00 | 8.07 | 39.01 | Cu3.5Mn0.8Sn1.1S4 | Cu2MnSnS4 |
24.78 | 31.37 | 6.79 | 3.22 | 33.84 | Cu2.8(Mn0.6Fe0.3)Sn1.4S4 | Cu2(Mn0.8Fe0.2)SnS4 |
27.85 | 29.40 | 4.97 | 6.01 | 31.77 | Cu2.3(Mn0.4Fe0.5)Sn1.1S4 | Cu2(Mn0.6Fe0.4)SnS4 |
30.83 | 22.51 | 1.54 | 9.11 | 36.01 | Cu2.4(Mn0.1Fe0.7)Sn0.8S4 | Cu2(Mn0.4Fe0.6)SnS4 |
28.94 | 25.69 | 1.79 | 11.24 | 32.35 | Cu2.3(Mn0.1Fe0.9)Sn1S4 | Cu2(Mn0.2Fe0.8)SnS4 |
29.45 | 0.00 | 26.42 | 11.93 | 32.19 | Cu2.2Fe0.9Sn1S4 | Cu2FeSnS4 |
Cu2MnSnS4 | Cu2(Mn0.8Fe0.2)SnS4 | Cu2(Mn0.6Fe0.4)SnS4 | Cu2(Mn0.4Fe0.6)SnS4 | Cu2(Mn0.2Fe0.8)SnS4 | Cu2FeSnS4 | Interpretation | Literature |
---|---|---|---|---|---|---|---|
617 | 617 | 617 | x | x | x | Mn-S specific vibrations | [45,46,47,48] |
669 | 669 | 669 | 669 | 669 | 669 | metal–thiourea complex – C–S stretching vibration | [49] |
721 | 720 | 721 | 719 | 720 | 719 | metal–O–H vibration | [50] |
861 | 872 | 860 | x | x | x | attributed to the resonance interaction between vibrational modes of sulfide ions in the crystal | [46,47] |
x | x | x | 880 | 885 | 890 | attributed to the resonance interaction between vibrational modes of sulfide ions in the crystal - Fe–S specific vibrations | [46,47,50] |
1020 | 1020 | 1021 | 1020 | 1020 | 1020 | C-S stretching vibration | [49] |
1114 | 1119 | 1117 | x | x | x | Mn-S specific vibrations | [48] |
x | x | x | 1142 | 1142 | 1142 | Fe-S specific vibrations | [50] |
1184 | 1184 | 1184 | 1184 | 1184 | 1184 | metal–thiourea complex - NH2 rocking vibration | [48,51] |
1424 | 1424 | 1424 | 1424 | 1423 | 1424 | metal–thiourea complex – N-C–N stretching and NH2 bending vibrational mode | [49,52] |
1651 | 1649 | 1647 | 1636 | 1636 | 1632 | metal–thiourea complex – N–C–N stretching and NH2 bending vibrational mode | [49,52] |
2351 | 2351 | 2348 | 2351 | 2351 | 2351 | CO2—was not related to the samples | [45] |
2914 | 2913 | 2905 | 2909 | 2897 | 2897 | C–H asymmetric stretching vibration | [45] |
3435 | 3435 | 3435 | 3435 | 3435 | 3435 | attributed to the O–H stretching vibration of H2O | [47,51,53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waluś, E.; Manecki, M.; Cios, G. Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials 2020, 13, 4440. https://doi.org/10.3390/ma13194440
Waluś E, Manecki M, Cios G. Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials. 2020; 13(19):4440. https://doi.org/10.3390/ma13194440
Chicago/Turabian StyleWaluś, Edyta, Maciej Manecki, and Grzegorz Cios. 2020. "Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres" Materials 13, no. 19: 4440. https://doi.org/10.3390/ma13194440
APA StyleWaluś, E., Manecki, M., & Cios, G. (2020). Synthesis and Characterization of Cu2FeSnS4–Cu2MnSnS4 Solid Solution Microspheres. Materials, 13(19), 4440. https://doi.org/10.3390/ma13194440