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Abstract: In this study, we used a hydrothermal method to synthesize microspheres of
Cu2(Mn1−xFex)SnS4 solid solution (X = 1, 0.8, 0.6, 0.4, 0.2, 0). The process was optimized to
improve the crystallinity, morphology, and purity of the obtained materials. All samples were
characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive
X-ray spectroscopy (EDS), Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.
The following conditions were optimized: A mixture of water and ethylene glycol at the ratio of 1:7
as the reaction medium, polyvinylpyrrolidone (PVP) as the surface ligand, and reaction temperature
of 195 ◦C for 7 days. The product of synthesis precipitated in the form of aggregates of nanocrystals,
which form homogeneous, often concentric microspheres with a diameter of 1–1.5 µm. The chemical
composition of the product can be well controlled by the chemical composition of the reactants.
The compound Cu2(Mn1−xFex)SnS4 forms a continuous series of solid solutions.
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1. Introduction

In the current era of thin-film solar cells, it is necessary to produce low-cost, high-performance
single-connector solar cells with high conversion efficiency. In contrast to most thin-film solar
technologies, chalcopyrite-based thin solar cells using CuInxGa1−xS(Se)2 (CIGS) solar panels offer
a potentially competitive efficiency to traditional silicon panels [1–3]. The highest efficiency of this
material achieves 23.35 [4], but they are currently very expensive to produce and the components are
rare and not environment friendly. Therefore, quaternary chalcogenide semiconductors of I2-II-IV-VI4

series (where I = Cu and Ag; II = Zn, Cd, Fe, and Mn; IV = Si, Ge, and Sn; and VI = S and Se) have
drawn great interest as an alternative absorber material in thin film solar cells that have reached 10%
efficiency, and contains only nontoxic and Earth-abundant elements. They have potential applications
not only as photovoltaic materials [5–13].

In this group, extensive research has been conducted on kesterites (Cu2ZnSnS4 (CZTS)) and
stannites (Cu2FeSnS4 (CFTS)) [14,15]. Extensive characterization of the synthetic stannite-type material
namely, Cu2MnSnS4 (CMTS), has also been conducted. Similar to CFTS, CMTS is also considered as
possible photovoltaic materials, due to its suitable bandgap and the requisite optical characteristics [16].
Several methods have been developed to fabricate these materials [17–36]. A previous review article has
described various methods to achieve this goal [37], which need different synthesis times (for example
liquid reflux method takes 6–12 h [23], synthesized via microwave needs irradiatiion for 5 min [18] or
sonochemical synthesis takes 3 h [38]). Some of these techniques require additional thermal annealing [28],
which takes extra time. There is no consensus on the optimal processing method. Among these methods,
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the hydrothermal method has been widely used due to a simpler procedure, which is eco-friendly and
economical in nature. Hydrothermal reactions have been successfully employed in the synthesis of
various chemicals. A number of microporous solids have been synthesized using hydrothermal reactions.
Various groups of researchers, such as geologists and mineralogists have also been able to determine
the conditions necessary for their formation in nature. The use of hydrothermal synthesis facilitates
the production of crystals of substances that are usually unstable near the melting point. In addition,
it allows for the synthesis of large crystals with high quality. Hydrothermal synthesis can be effective
both, at temperatures and pressures below the critical point for a specific solvent and under supercritical
conditions. This method allows to control the chemical composition of the final product. One of the
disadvantages of this method is the inability to monitor crystals during the process of their growth.
Despite this, it is still popular among the industries producing nanomaterials. Although, several studies
have used the conventional or microwave solvothermal/hydrothermal route for the synthesis of CZTS or
CFTS, this technique still requires more work and optimization [37]. In a typical procedure, the synthesis
of quaternary chalcogenide semiconductors takes 24 h [39].

Most I2–II–IV–VI4 compounds crystallize with a zinc-blende (ZB) or wurtzite (WS)-type
superstructure, showing the tetragonal stannite (ZB-derived) or the orthorhombic wurtzite–stannite
(WS-derived) structure [1]. The crystal structure of phases in the solid solution series of Cu2FeSnS4–
Cu2MnSnS4 has been thoroughly examined in a previous study [40]. The authors determined a
continuous solid solution in the series. The structure was described in the tetragonal system (the space
group I–42m), where each cation is tetrahedrally coordinated to four sulfur anions in a sphalerite-like
arrangement. However, several previous investigations have indicated that the formation of a certain
crystal structure can be closely related to the reaction conditions [see 1 and the literature cited, therein].
So far, the methods of synthesis of CFTS–CMTS solid solution series are poorly studied. In a previous
study [40], the material was synthesized using quartz ampoules sealed under Ar atmosphere and
heated to 850 ◦C for about 72 h. This method may have little use in future industrial applications.

In this study, we prepared a series of compounds of Cu2(Mn1−xFex)SnS4 (X = 1, 0.8, 0.6, 0.4, 0.2, 0)
in the form of spherical microparticles by using the hydrothermal synthesis method requiring simple
reactants and relatively low temperature. We experimentally identified the optimal conditions for
the synthesis of these compounds. This method the morphology and chemical composition of the
resulting material to be controlled, which precipitates in the form of uniform microspheres composed
of nanocrystals. It contributes to the development of production of photovoltaic materials with
the required stoichiometry by means of a convenient synthesis technique by controlling the ratio
of precursors.

2. Materials and Methods

2.1. Materials

Analytical grade ethylene glycol (EG), copper (II) chloride dihydrate (CuCl2·2H2O), tin (IV)
chloride pentahydrate (SnCl4·5H2O), ferrous chloride tetrahydrate (FeCl2·4H2O), manganese chloride
tetrahydrate (MnCl2·4H2O), thiourea (Tu), polyvinylpyrrolidone (PVP, Mw = 55 g/mol), and double
distilled water were used in the synthesis. All chemicals were purchased from Sigma Aldrich (Merck,
Darmstadt, Germany) and were used as received.

2.2. Synthesis of Microspheres

The solutions of 1 mmol copper (II) chloride dihydrate, 0.5 mmol tin (IV) chloride pentahydrate,
0.5 mmol ferrous chloride tetrahydrate, 0.5 mmol manganese chloride tetrahydrate, and 2.5 mmol
Tu were mixed in the proportions resulting in a molar ratio of Cu, (Mn + Fe), Sn, and S equal to
2:1:1:4. To obtain solutions with different content of Fe and Mn, the molar ratio of Fe/(Mn + Fe) in the
solution was varied (0.0, 0.2, 0.4, 0.6, 0.8, and 1). The solution was mixed with 1.68 g PVP, 24–96 mL EG,
and 0–72 mL double distilled water under magnetic stirring. Various concentrations of EG and H2O
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were prepared in different ratios: 1:0, 7:1, 3:1, 5:3, 1:1, 3:5, and 1:3. The mixture (96 mL) was transferred
to two Teflon-lined containers and maintained at various temperatures (in the range of 160–195 ◦C) for
various time intervals (from 1 to 14 days). The products were washed several times with water and
acetone, centrifuged, and air-dried at 60 ◦C.

2.3. Characterization of Microspheres

The morphology of CFTS microspheres was characterized by using scanning electron microscopy
(SEM, FEI Quanta 200 FEG and FEI Sirion 200, FEI, Hillsboro, OR, USA) equipped with secondary
electron (SE) and back-scattered electron (BSE) detectors. An energy dispersive spectrometer (EDS,
FEI Quanta (FEI, Hillsboro, OR, USA) was employed to monitor variations in the chemical composition
of the microspheres. Samples of microspheres were fixed on a substrate with double-sided sticky
tape and imaged without coating in a low vacuum. The selected samples were immersed in epoxy
and polished to reveal the internal structure of the particles. Powder X-ray diffraction (XRD) patterns
were recorded with Rigaku SmartLab diffractometer (Neu-Isenburg, Tokyo, Japan) in the range of
2–75◦ 2θ with a step size of 0.05◦ using graphite-monochromatized Cu Kα radiation. The phases
were identified using the International Centre for Diffraction Data (ICDD) database and XRAYAN
software (v 4.0.5, “KOMA” – Henryk Marciniak, Warszawa, Poland) [41]. For Raman spectroscopy,
Thermo Scientific DXR Raman Microscope (Thermo Fisher Scientific, Waltham, MA, USA) was used.
Spectra were recorded at room temperature with a green laser (k = 532 nm, laser power of 10 mW,
slit aperture of 25 µm, resolution of 1.9 cm−1 in the range between 100 and 3579 cm−1). A total of
10 exposures of 3 s were taken for each spectrum. Spectra were interpreted with the aid of OMNIC for
Dispersive Raman software (v 8.3.103, Thermo Fisher Scientific, Waltham, MA, USA). Infrared spectra
were acquired using Bruker Sensor 27 spectrometer (BRUKER, Ettlingen, Germany) in the range of
400–4000 cm−1 (64 scans at the resolution of 1 cm−1). Prior to analysis, KBr pellets were prepared by
homogenizing 200 mg of ground KBr with 4 mg of the sample.

3. Results and Discussion

3.1. Optimization of the EG:H2O Ratio

To obtain the optimum condition for the formation of isomorphic series of Cu2(Mn1−xFex)SnS4

microspheres, the effect of the reaction conditions (including the ratio of EG to H2O, the reaction
temperature, and duration of the synthesis) on the morphological and structural properties of
as-synthesized CFTS and CMTS microspheres was analyzed. In the next step, the optimum conditions
were chosen to synthesize and characterize all the members of the stannite isomorphic series with
Mn-Fe substitutions.

CFTS synthesized for 1 week at 195 ◦C with different proportions of EG and H2O were characterized
by XRD and SEM-EDS. Figure 1 shows the diffraction patterns of the products of the synthesis. All XRD
patterns are strongly influenced by the formation of small crystallites and amorphization. The position
of main diffraction peaks in all samples correspond to the tetragonal structure of CFTS stannite (JCPDS
74-1025). In some samples, small admixtures of elementary sulfur, CuS, or SnS were detected as
artifacts of incomplete reaction. The most intensive patterns with the sharpest peaks and the best
match of reflections to the standard stannite pattern resulted from the EG:H2O ratio equal to 1:0 and 7:1,
respectively. The products indicate the desired CFTS with the best crystallinity. Products synthesized
from EG:H2O ratio of 3:1, 5:3. 1:1, and 3:5 show a good match of reflections with standard patterns
but contain more impurities. Furthermore, the products synthesized from EG:H2O at a ratio of 1:3
consisted of a single-phase, but the peaks were of low intensity and their position was shifted toward
the lower values of 2θ.
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Figure 1. Powder X-ray diffraction pattern of Cu2FeSnS4 (CFTS) nanoparticles synthesized at various 
EG:H2O ratios with the stannite standard positions marked at the bottom. In some samples impurities 
were detected as artifacts of an incomplete reaction. The optimal EG:H2O ratio is 7:1. 

XRD patterns of CMTS obtained at different ratios of EG:H2O by synthesis lasting for 1 
week at 195 °C are compared in Figure 2. The synthesis in pure glycol (EG:H2O = 1:0) leads to 
the formation of a tetragonal CMTS (JCPDS card no. 51-0757). With the ratio EG:H2O = 7:1 a 
product with mixed tetragonal and hexagonal structure forms. The position of the reflexes at 2θ° 
= ~18.02, 28.21, 29.56, 32.47, 33.07, 37.37, 44.46, 46.99, 55.31, correspond to the tetragonal 
structure (JCPDS 51-0757) and the positions at 2θ° = ~26.77, 28.21, 30.32, 39.23, 47.23, 52.26, 55.89 
correspond to the hexagonal structure (Liang et al., 2012). The same can be observed for EG:H2O 
= 3:1. However, in this case the peaks are less intense and broad. As the water content increases, 
the peaks characteristic of hexagonal CMTS become clearer which indicates that the crystalline 
structure of CMTS is gradually transforming. Note that the optical band gaps for tetragonal 
CMTS and hexagonal CMTS are almost the same (ca. 1.1 eV as calculated by Liang et al. [42]) 
suggesting that both structures have the same potential application in solar cells. 

Figure 1. Powder X-ray diffraction pattern of Cu2FeSnS4 (CFTS) nanoparticles synthesized at various
EG:H2O ratios with the stannite standard positions marked at the bottom. In some samples impurities
were detected as artifacts of an incomplete reaction. The optimal EG:H2O ratio is 7:1.

XRD patterns of CMTS obtained at different ratios of EG:H2O by synthesis lasting for 1 week at
195 ◦C are compared in Figure 2. The synthesis in pure glycol (EG:H2O = 1:0) leads to the formation
of a tetragonal CMTS (JCPDS card no. 51-0757). With the ratio EG:H2O = 7:1 a product with mixed
tetragonal and hexagonal structure forms. The position of the reflexes at 2θ◦ = ~18.02, 28.21, 29.56,
32.47, 33.07, 37.37, 44.46, 46.99, 55.31, correspond to the tetragonal structure (JCPDS 51-0757) and the
positions at 2θ◦ = ~26.77, 28.21, 30.32, 39.23, 47.23, 52.26, 55.89 correspond to the hexagonal structure
(Liang et al., 2012). The same can be observed for EG:H2O = 3:1. However, in this case the peaks are less
intense and broad. As the water content increases, the peaks characteristic of hexagonal CMTS become
clearer which indicates that the crystalline structure of CMTS is gradually transforming. Note that
the optical band gaps for tetragonal CMTS and hexagonal CMTS are almost the same (ca. 1.1 eV as
calculated by Liang et al. [42]) suggesting that both structures have the same potential application in
solar cells.

The dependence of CFTS particle morphology on the EG:H2O ratio is apparent in SEM images
(Figure 3). The products synthesized from EG:H2O ratios of 1:0 and 7:1 show spherical shapes
(Figure 3A,B), whereas those synthesized from 3:1, 5:3, and 1:1 ratio show more irregular morphology
(Figure 3C–E). The size of the CMTS particle is similar to that of CFTS (range = 2–3 µm). As the water
content increases in the initial batch, two generations of crystallites appear that are characterized by
more irregular edges and flower-like particles. This is shown in Figure 3G and F (EG:H2O ratio of 3:5
and 1:3). Larger, flower-like particles, relatively uniform in size (2–3 µm), are accompanied by much
smaller spherical particles (about 0.1 µm).
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Figure 3. The effect of various EG:H2O ratios on the morphology of Cu2FeSnS4 (CFTS) synthesized for
1 week at 195 ◦C: (A) 1:0; (B) 7:1; (C) 3:1; (D) 5:3; (E) 1:1; (F) 3:5; (G) 1:3 EG:H2O ratio. With the increase
in the water content in the initial batch, two generations of crystallites appear. The optimal EG:H2O
ratio is 7:1.

3.2. Optimization of Time of Synthesis

Different times for the synthesis were studied to optimize the synthesis: 1 day, 3 days, 1 week,
2 weeks, and the synthesis repeated twice for 1 week each time in fresh solution. The temperature of
the synthesis was maintained at 195 ◦C (except for 2 weeks experiment when the temperature was
160 ◦C for technical reasons) and the EG:H2O ratio was always equal to 7:1.
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Figure 4 shows the XRD patterns of the resulting CFTS particles. All experiments resulted in a
tetragonal stannite identical to JCPDS standard No 74-1025. These patterns are similar in intensity
and width of peaks. Small amounts of impurities (CuS, FeO, and FeS) were observed in samples
synthesized for 2 weeks. Lower temperatures during synthesis (160 ◦C) also affected the product
formation by decreasing crystallinity and forming impurities. This shows that 195 ◦C was an optimal
temperature, although we found the formation of sulfur impurities in all the samples. After just one
day of synthesis in 195 ◦C it is possible to obtain satisfactory purity and crystallinity of CFTS, but the
optimal synthesis time is one week. There were no significant effects resulting from the prolongation
of the time of synthesis of CFTS on XRD pattern.
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Figure 4. Powder X-ray diffraction patterns of synthetic Cu2FeSnS4 (CFTS) resulting from different
synthesis times (synthesis at 195 ◦C and EG:H2O = 7:1). All experiments resulted in a tetragonal
stannite identical to JCPDS standard No 74-1025. The optimal reaction time is one week.

Figure 5 shows the SEM images of CFTS microspheres synthesized at different times. All products
consisted of spherical particles of relatively average size from 0.6 to 1.5 µm (Figure 6). No changes were
observed in the morphology of CFTS microparticles with extended synthesis time. This shows that
CFTS microspheres of uniform particle size can be easily synthesized within 1 day. The exception is an
experiment conducted twice for a week, which resulted in the two generations of sharp-edged particles.
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Figure 6. Statistical particle size distribution diagrams Cu2FeSnS4 (CFTS) resulting from different
synthesis times: (A) 1 day, (B) 3 days, (C) 1 week, (D) 2 weeks. The extended synthesis time generates
larger microparticles and the optimal reaction time is one week.

Figure 7 shows the XRD patterns for CMTS synthesized for different times. The dominant peaks
are those corresponding to the tetragonal structure (JCPDS sheet No. 51-0757) can be observed at 2θ
values ~18.02, 28.21, 29.56, 32.47, 33.07, 37.37, 44.46, 46.99, and 55.31. However, peaks corresponding
to the hexagonal structure [42] can also be observed at 2θ values ~26.77, 28.21, 30.32, 39.23, 47.23,
52.26 and 55.89. In addition, small amounts of MnCO3 (rhodochrosite) were detected as undesirable
contamination in the product of syntheses lasting 1 day and 3 days and in the product of synthesis at
low temperature (160 ◦C for 2 weeks).
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Figure 8 shows SEM images of CMTS depending on the duration of the synthesis. As a result of
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an average size of 0.5–1 µm are produced. Larger microspheres of 1 to 1.5 µm diameter are formed
during a long time of synthesis (1 and 2 weeks).
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In the products of the syntheses lasting 1 day, 3 days, and twice a week, the presence of an
additional phase in the form of larger isometric crystals was observed. The result of elementary EDS
(Figure 9) analysis is consistent with the composition of rhodochrosite, which is in line with the results
of XRD analysis.
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Figure 9. SEM/EDS spectrum showing the elemental composition of sparse admixtures of rhodochrosite
(MnCO3) found in CMTS the products of syntheses lasting 1 day, 3 days, and 2 times a week.

3.3. Synthesis of Cu2(Mn1−xFex)SnS4 Solid Solution Series

For the synthesis of solid solutions of Cu2(Mn1−xFex)SnS4 series, the synthesis time and EG:H2O
ratio have been chosen to obtain the best crystalline products with the least amount of impurities.
The EG:H2O ratio of 7:1 and a reaction time of one week at 195 ◦C met these expectations. The diffraction
peaks for both this product and CFTS were the sharpest and most intense. The results are shown in
Figure 10. Similar to Lopez-Vergara et al. [40], all samples showed tetragonal structure although the
synthesis of CMTS under these conditions resulted in a product composed of a mixture of two phases
(tetragonal and hexagonal). The unit cell parameters increased linearly with the increase in Mn content
(Figure 11). This is manifested by the systematic shift in the position of diffraction peaks toward
lower angles 2θ (from 28.8◦ 2θ to 28.2◦ 2θ for the main peak). In addition, the peaks became sharper,
indicating an improvement in crystallinity. As the Mn content decreased, the hexagonal phase in the
CMTS mixture disappeared. The peaks associated with the hexagonal structure can be observed in
samples with Mn:Fe ratios of 1:1, 0.8:0.2, and 0.6:0.4. This suggests that CMTS formed by this method
of synthesis can easily form tetragonal and hexagonal forms, whereas CFTS is more likely to precipitate
in tetragonal structure.

The morphology of all samples in the series was very similar (Figure 12). They consisted of
relatively uniform microspheres, ca. 1–1.5 µm in diameter, with a rough surface. The internal structure
of the microspheres appeared to be concentric. The outer rim was made of aggregates of small crystals,
whereas the core was much more homogeneous. The elemental composition of the members of the
series as determined with the use of SEM/EDS microanalysis (Figure 13, Table 1) is very close to what
was expected from the synthesis. This indicates that the composition of the synthesis can be precisely
controlled by the conditions of the experiment. There was no difference in elemental composition
between the rim and the core. However, with Mn-rich samples, it is hypothesized that the structure of
the core and the rim may be different. Tiong et al. [39] reported that the material consisting of both
hexagonal and tetragonal crystalline structures was obtained by using an organic sulfur precursor such
as thioacetamide and Tu in the precursor solution of the hydrothermal reaction. They obtained pure
tetragonal kesterite nanocrystals when Na2S was employed as the precursor of sulfur. A mixture of
both tetragonal and hexagonal crystalline structure was obtained by using organic Tu as the precursor
for sulfur [39,43,44].
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shift in the position of diffraction peaks towards lower angles 2θ with increasing Mn content is observed.
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Figure 12. Scanning electron microscopy images of Cu2(Mn1−xFex)SnS4 solid solution series:
(A) Cu2FeSnS4 (CFTS); (B) Mn0.2Fe0.8; (C) Mn0.4Fe0.6; (D) Mn0.6Fe0.4; (E) Mn0.8Fe0.2; (F) Cu2MnSnS4

(CMTS). The left image in each pair is taken from polished samples immersed in epoxy resin to show
the inner nanostructure of the microspheres on the cross-sections, the right one is from raw powders.
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Figure 13. Elemental composition of Cu2(Mn1−xFex)SnS4 solid solution series. All the samples have
the composition close to what was expected from the synthesis. All the samples have the composition
close to what was expected from the synthesis.

Table 1. Chemical composition (wt%) of Cu2(Mn1−xFex)SnS4 microcrystals from SEM/EDS analysis.

Cu Mn Fe Sn S Estimated Nominal

26.51 26.44 0.00 8.07 39.01 Cu3.5Mn0.8Sn1.1S4 Cu2MnSnS4
24.78 31.37 6.79 3.22 33.84 Cu2.8(Mn0.6Fe0.3)Sn1.4S4 Cu2(Mn0.8Fe0.2)SnS4
27.85 29.40 4.97 6.01 31.77 Cu2.3(Mn0.4Fe0.5)Sn1.1S4 Cu2(Mn0.6Fe0.4)SnS4
30.83 22.51 1.54 9.11 36.01 Cu2.4(Mn0.1Fe0.7)Sn0.8S4 Cu2(Mn0.4Fe0.6)SnS4
28.94 25.69 1.79 11.24 32.35 Cu2.3(Mn0.1Fe0.9)Sn1S4 Cu2(Mn0.2Fe0.8)SnS4
29.45 0.00 26.42 11.93 32.19 Cu2.2Fe0.9Sn1S4 Cu2FeSnS4
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Figure 14 shows the infrared absorption spectra for the six members of the CFTS–CMTS series
from 400 to 3600 cm−1. Table 2 shows the band assignments and literature sources. Samples of
Cu2MnSnS4, Cu2(Mn0.8Fe0.2)SnS4, and Cu2(Mn0.6Fe0.4)SnS4 show characteristic peaks at 617, 860,
and 1114 cm−1 associated with specific Mn–S vibrations. These bands are assigned to the resonance
interaction between the vibration modes of the sulfide ions in the crystal. As the Fe content increases,
these bands disappear and bands at 880 and 1142 cm−1 show up which corresponds to Fe–S specific
vibrations (samples Cu2(Mn0.4Fe0.6)SnS4, Cu2(Mn0.2Fe0.8)SnS4, and Cu2FeSnS4). The intensity of
the bands is not very high, but their position is clear. FTIR analysis is very sensitive and allows
for the identification of small amounts of contaminants. Therefore, in the presented spectra, many
bands do not come directly from the synthesis products, but are an artifact of a small amount of
impurity arising from the unreacted components used in the experiments. These reagents are not
crystalline and were not detected in XRD analysis. The absorption peak at 3435 cm–1 corresponds to
the presence of water, probably from the presence of humidity in the air. Similarly, small amount of
CO2 adsorbed from the air results in bands at 2351 cm–1. The characteristic bands at 720 cm–1 are
assigned to metal–O–H bending vibrations. The vibration band observed at 2935 cm–1 refers to the
tensile strength of C–H bond, whereas the band at 1020 cm–1 corresponds to the tensile strength of
C–S bond. The bands observed at 1651, 1424, and 1183 cm–1 were assigned to metal-Tu complexes.
A more complete assignment of these peaks was proposed based on the study performed on metal–Tu
complexes involving δN–H bending deformation (1651 cm−1), NH2 rocking vibration, C–S stretching
vibration or N–C–N stretching vibration (1424 cm−1), C=S, C–N, or NH2 rocking vibration (1185 cm−1).
The C=S stretching vibration mode of the Tu molecule is found at 668 cm−1.
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Figure 14. Fourier transform infrared spectra of Cu2(Mn1−xFex)SnS4 solid solution series. Several bands
do not come directly from the synthesis products, but are an artifact of a small amount of impurity
coming from the unreacted components used in the experiments. Specific Mn–S vibrations (617, 860,
1114 cm−1) and Fe–S vibrations (880 and 1142 cm−1) are marked.
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Table 2. Fourier transform infrared frequency range and functional groups of Cu2(Mn1−xFex)SnS4 solid solution series.

Cu2MnSnS4 Cu2(Mn0.8Fe0.2)SnS4 Cu2(Mn0.6Fe0.4)SnS4 Cu2(Mn0.4Fe0.6)SnS4 Cu2(Mn0.2Fe0.8)SnS4 Cu2FeSnS4 Interpretation Literature

617 617 617 x x x Mn-S specific vibrations [45–48]

669 669 669 669 669 669 metal–thiourea complex—C–S
stretching vibration [49]

721 720 721 719 720 719 metal–O–H vibration [50]

861 872 860 x x x

attributed to the resonance
interaction between vibrational

modes of sulfide ions
in the crystal

[46,47]

x x x 880 885 890

attributed to the resonance
interaction between vibrational

modes of sulfide ions in the
crystal—Fe–S specific vibrations

[46,47,50]

1020 1020 1021 1020 1020 1020 C-S stretching vibration [49]

1114 1119 1117 x x x Mn-S specific vibrations [48]

x x x 1142 1142 1142 Fe-S specific vibrations [50]

1184 1184 1184 1184 1184 1184 metal–thiourea complex—NH2
rocking vibration [48,51]

1424 1424 1424 1424 1423 1424
metal–thiourea complex—N-C–N

stretching and NH2 bending
vibrational mode

[49,52]

1651 1649 1647 1636 1636 1632
metal–thiourea

complex—N–C–N stretching and
NH2 bending vibrational mode

[49,52]

2351 2351 2348 2351 2351 2351 CO2—was not related
to the samples [45]

2914 2913 2905 2909 2897 2897 C–H asymmetric
stretching vibration [45]

3435 3435 3435 3435 3435 3435 attributed to the O–H stretching
vibration of H2O [47,51,53]
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The Raman spectra of the samples analyzed (Figure 15) show bands characteristic of stannite
in the range of 200–500 cm−1 [54]. Experimental Raman scattering spectra were analyzed by the
deconvolution to Lorentzian curves. The dominant structure at about ~330 cm−1 in the experimental
spectra is the vibration of pure anion mode of S anions around solid Sn cations, whereas the mode at
about ~290 cm−1 can be considered as the pure S anion mode around Cu cation. Deconvolution shows
an additional weaker band at 352–366 cm−1

, which is in good agreement with the frequencies reported
for this compound [54]. As the Mn content in the samples increases, shifts in positions of some bands
toward lower wavenumbers are observed (from 366 to 352 and from 291 to 283 cm−1). This may
be related to a slight change in the length and force of the length of the metal–S bond or due to
the two kinds of anionic mode of S anions around fixed Sn cations related to a different structure
in a single crystal [55]. There is also a variation in the frequency of the main A1 vibration mode at
~330 cm−1. The broadening of the main peaks found in the solid solution with the increasing content
of Fe is attributed to disorder effects due to chemical substitutions in M crystallographic positions [56].
The spectrum of CMTS (Figure 12F) shows the splitting of the main peak into 323 and 334 cm−1. This is
consistent with XRD results. Typically, the main Raman peak of stannite structure CZTS is reported at
330–339 cm−1 matching the values well reported for crystals and films. Nevertheless, frequencies in
the range of 320–334 cm−1 can also be found in the literature for CZTS in the same range where the
strongest Raman features of wurtzite and stannite CZTS were often reported [57].Materials 2020, 13, x FOR PEER REVIEW 14 of 18 
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4. Conclusions

In this study, a low-cost and environmentally friendly method of preparation of semiconductors
was successfully tested. The hydrothermal synthesis method, requiring simple reactants, and relatively
low temperature and reasonable time can be used to obtain CFTS, CMTS, and their solid solutions on a
larger scale. Optimal conditions for the synthesis are as follows: A mixture of H2O:EG at the ratio of 1:7
as the reaction medium, PVP as the surface ligand, and temperature of 195 ◦C for 7 days. The synthesis
product precipitates as aggregates of nanocrystals. The aggregates form uniform, often concentric
microspheres that are 1–1.5 µm in diameter. The chemical composition of the product can be well
controlled by the chemical composition of the reactants, and the compound Cu2(Mn1−xFex)SnS4 forms
a continuous solid solution series. Lopez-Vergara et al. [40] have drawn similar conclusions. If the
series members rich in Fe are produced, then the product has a tetragonal structure. However, if the
series members rich in Mn are produced, then the product is a mixture of phases with a tetragonal and
hexagonal structure. We believe this material is a good candidate for the alternative at semiconductor
and can be used as an adequate absorber in solar cells or catalyzation in photocatalysis.

Author Contributions: E.W. performed the experimental synthesis, characterization, and data analysis and wrote
the paper. M.M. have contributed to the study design and scientific discussions of the results. G.C. SEM formal
analysis. All co-authors have contributed to the manuscript. All authors have read and agreed to the published
version of the manuscript.
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