Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications
Abstract
1. Introduction
2. Electrical Charge Storage Device
3. FET Devices
4. Electrochemical Memristor
5. Electrochemical Charge Storage Device
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Schwab, K. The Fourth Industrial Revolution; New York Crown Publishing Group: New York, NY, USA, 2017; ISBN 9781524758875. [Google Scholar]
- Anton, P.S.; Silberglitt, R.; Schneider, J. The Global Technology Revolution-Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015; RAND: Santa Monica, CA, USA, 2001; ISBN 0-8330-2949-5. [Google Scholar]
- Ehud, G. Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology; Imperial College Press: London, UK, 2007; ISBN 978-1-86094-677-6. [Google Scholar]
- Löffler, S.; Libberton, B.; Richter-Dahlfors, A. Organic bioelectronic tools for biomedical applications. Electronics 2015, 4, 879–908. [Google Scholar] [CrossRef]
- Couvreur, P.; Vauthier, C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 2006, 23, 1417–1450. [Google Scholar] [CrossRef]
- Rivnay, J.; Owens, R.M.; Malliaras, G.G. The rise of organic bioelectronics. Chem. Mater. 2014, 26, 679–685. [Google Scholar] [CrossRef]
- Noy, A. Bionanoelectronics. Adv. Mater. 2011, 23, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Park, J.; Oh, E.H.; Ko, H.J.; Hong, S.; Park, T.H. Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv. Health Mater. 2014, 3, 360–366. [Google Scholar] [CrossRef]
- Macchia, E.; Sarcina, L.; Picca, R.A.; Manoli, K.; Franco, C.D.; Scamarcio, G.; Torsi, L. Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. Anal. Bioanal. Chem. 2020, 412, 811–818. [Google Scholar] [CrossRef]
- Pennacchio, F.A.; Garma, L.D.; Matino, L.; Santoro, F. Bioelectronics goes 3D: New trends in cell–chip interface engineering. J. Mater. Chem. B 2018, 6, 7096–7101. [Google Scholar] [CrossRef]
- Dunn, K.E.; Trefzer, M.A.; Johnson, S.; Tyrrell, A.M. Towards a bioelectronic computer: A theoretical study of a multi-layer biomolecular computing system that can process electronic inputs. Int. J. Mol. Sci. 2018, 19, 2620. [Google Scholar] [CrossRef]
- Willner, I.; Willner, B. Biomaterials integrated with electronic elements: En route to bioelectronics. Trends Biotechnol 2001, 19, 222–230. [Google Scholar] [CrossRef]
- Berggren, M.; Richter-Dahlfors, A. Organic bioelectronics. Adv. Mater. 2007, 19, 3201–3213. [Google Scholar] [CrossRef]
- Yoon, J.; Lee, T.; Choi, J.W. Development of bioelectronic devices using bionanohybrid materials for biocomputation system. Micromachines 2019, 10, 347. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Lee, T.; Oh, S.M.; Kim, H.; Choi, J.W. Electrochemical biomemory device consisting of recombinant protein molecules. Biotechnol. Bioprocess Eng. 2010, 15, 30–39. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Ward, S.A. Future is ready for swallowable sensors. Hepatobiliary Surg. Nutr. 2019, 8, 267–269. [Google Scholar] [CrossRef]
- Siuti, P.; Yazbek, J.; Lu, T.K. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 2013, 31, 448. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Winfree, E.; Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 2011, 475, 368–372. [Google Scholar] [CrossRef]
- Shapiro, E.; Gil, B. RNA computing in a living cell. Science 2008, 322, 387. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P.S.; Tracey, K.J. Bioelectronic medicine: Technology targeting molecular mechanisms for therapy. J. Int. Med. 2017, 282, 3–4. [Google Scholar] [CrossRef]
- Koo, J.; MacEwan, M.R.; Kang, S.; Won, S.M.; Stephen, M.; Gamble, P. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836. [Google Scholar] [CrossRef]
- Rogers, J.; Bao, Z.; Lee, T.W. Wearable bioelectronics: Opportunities for chemistry. Acc. Chem. Res. 2019, 52, 521–522. [Google Scholar] [CrossRef]
- Lee, T.; Kim, S.; Min, J.; Choi, J. Multi-level biomemory device consisting of recombinant azurin/cytochrome c. Adv. Mater. 2010, 22, 510–514. [Google Scholar] [CrossRef]
- Gao, M.; Shih, C.C.; Pan, S.Y.; Chueh, C.C.; Chen, W.C. Advances and challenges of green materials for electronics and energy storage applications: From design to end-of-life recovery. J. Mater. Chem. A 2018, 6, 20546–20563. [Google Scholar] [CrossRef]
- Lee, T.; Kumar, A.Y.; Pi, F.; Sharma, A.; Choi, J.; Guo, P. Construction of RNA-quantum dot chimera for nanoscale resistive biomemory application. ACS Nano 2015, 9, 6675–6682. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Zhou, Y.; Han, S.; Roy, V.A.L. From biomaterial-based data storage to bio-inspired artificial synapse. Mater. Today 2018, 21, 537–552. [Google Scholar] [CrossRef]
- Wang, L.; Wen, D. Nonvolatile bio-memristor based on silkworm hemolymph proteins. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 2018, 239, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Joung, Y.H. Development of implantable medical devices: From an engineering perspective. Int. Neurourol. J. 2013, 17, 98–106. [Google Scholar] [CrossRef]
- Simon, D.T.; Gabrielsson, E.O.; Tybrand, K.; Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology and technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef]
- Song, T.; Eshra, A.; Shah, S.; Bui, H.; Fu, D.; Yang, M.; Mokhtar, R.; Reif, J. Fast and compact DNA logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 2019, 14, 1075–1081. [Google Scholar]
- Yagati, A.K.; Lee, T.; Min, J.; Choi, J.W. A robust nanoscale biomemory device composed of recombinant azurin on hexagonally packed Au-nano array. Biosens. Bioelectron. 2013, 40, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, N.R.; Lee, J.S. Biocompatible and flexible chitosan-based resistive switching memory with magnesium electrodes. Adv. Funct. Mater. 2015, 25, 5586–5592. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z.; et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Shin, M.; Lee, T.; Choi, J. Highly sensitive biosensors based on biomolecules and functional nanomaterials depending on the types of nanomaterials: A perspective review. Materials 2020, 13, 299. [Google Scholar] [CrossRef]
- Zhang, A.; Lieber, C.M. Nano-bioelectronics. Chem. Rev. 2016, 116, 215–257. [Google Scholar] [CrossRef]
- Irimia-Vladu, M. Green electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 2014, 43, 588–610. [Google Scholar] [CrossRef]
- Li, R.; Wang, L.; Kong, D.; Yin, L. Recent progress on biodegradable materials and transient electronics. Bioactive Mater. 2018, 3, 322–333. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.; Choi, Y.-J.; Kang, C.J.; Yoon, T.-S.; Lee, H.H. Electrical charging characteristics of Au NPs embedded by sequence specific complementary DNA hybridization in metal-pentacene-insulator-silicon device. Biochip. J. 2014, 8, 275–281. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, Z.; Sun, L.; Wang, J.; Chen, M.; Xu, Z.; Liao, Q.; Zhou, L.; Chen, X.; et al. Biomemory: Phototunable biomemory based on light-mediated charge trap. Adv. Sci. 2018, 5, 1870051. [Google Scholar] [CrossRef]
- Yagati, A.K.; Min, J.; Choi, J.-W. Recombinant protein-based nanoscale biomemory devices. J. Nanosci. Nanotechno. 2014, 14, 433–446. [Google Scholar] [CrossRef]
- Kim, M.; Lee, H.-J.; Oh, S.; Kim, Y.; Jung, H.; Oh, M.-K.; Yoon, Y.J.; Yoo, T.H.; Yoon, T.-S.; Lee, H.H. Robust ZnO nanoparticle embedded memory device using vancomycin conjugate and its biorecognition for electrical charging node. Biosens. Bioelectron. 2014, 56, 33–38. [Google Scholar] [CrossRef]
- Oh, S.; Kim, M.; Kim, Y.; Jung, H.; Yoon, T.-S.; Choi, Y.-J.; Kang, C.J.; Moon, M.-J.; Jeong, Y.-Y.; Park, I.-K.; et al. Organic memory device with self-assembly monolayered aptamer conjugated nanoparticles. Appl. Phys. Lett. 2013, 103, 083702. [Google Scholar] [CrossRef]
- Yagati, A.K.; Lee, T.; Choi, J.-W. Azurin/CdSe-ZnS-based bio-nano hybrid structure for nanoscale resistive memory device. Materials 2017, 10, 803. [Google Scholar] [CrossRef]
- Tseng, R.J.; Tsai, C.; Ma, L.; Ouyang, J.; Ozkan, C.S.; Yang, Y. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat. Nanotechnol. 2006, 1, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Portney, N.G.; Martinez-Morales, A.A.; Ozkan, M. Nanoscale memory characterization of virus-templated semiconducting quantum dots. ACS Nano 2008, 2, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, V.; Zadegan, R.M.; Sandhu, G.S.; Church, G.M.; Hughes, W.L. Nucleic acid memory. Nat. Mater. 2016, 15, 366–370. [Google Scholar] [CrossRef]
- Lee, J.; Min, S.-W.; Lee, H.S.; Yi, Y.J.; Im, S. MoS2 nanosheet channel and guanine DNA-base charge injection layer for high performance memory transistors. J. Mater. Chem. C 2014, 2, 5411–5416. [Google Scholar] [CrossRef]
- Bathe, M.; Rothemund, P.W.K. DNA nanotechnology: A foundation for programmable nanoscale materials. MRS Bull. 2017, 42, 882–888. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Manoharan, S.; Kim, S.J. High energy symmetric supercapacitor based on mechanically delaminated few-layered MoS2 sheets in organic electrolyte. J. Alloy. Compd. 2019, 771, 803–809. [Google Scholar] [CrossRef]
- Li, S.; Liu, P.; Huang, X.; Tang, Y.; Wang, H. Reviving bulky MoS2 as an advanced anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10988–10997. [Google Scholar] [CrossRef]
- Gao, Y.P.; Huang, K.J.; Wu, X.; Hou, Z.Q.; Liu, Y.Y. MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. J. Alloy. Compd. 2018, 741, 174–181. [Google Scholar] [CrossRef]
- Han, S.A.; Bhatia, R.; Kim, S.-W. Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg. 2015, 2, 17. [Google Scholar] [CrossRef]
- Lv, R.; Robinson, J.A.; Schaak, R.E.; Sun, D.; Sun, Y.; Mallouk, T.E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat. Nanotechnol. 2011, 6, 658–667. [Google Scholar] [PubMed]
- Guo, S.; Vieweger, M.; Zhang, K.; Yin, H.; Wang, H.; Li, X.; Li, S.; Hu, S.; Sparreboom, A.; Evers, B.M.; et al. Ultra-thermostable RNA nanoparticles for solubilizing and high-yield loading of paclitaxel for breast cancer therapy. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Pi, F.; Binzel, D.W.; Lee, T.J.; Li, Z.; Sun, M.; Rychahou, P.; Li, H.; Haque, F.; Wang, S.; Croce, C.M.; et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol. 2018, 13, 82–89. [Google Scholar]
- Zhuang, X.; Huang, W.; Yang, X.; Han, S.; Li, L.; Yu, J. Biocompatible/degradable silk fibroin:poly(vinyl alcohol)-blended dielectric layer towards high-performance organic field-effect transistor. Nanoscale Res. Lett. 2016, 11, 439. [Google Scholar] [CrossRef]
- Willner, I.; Willner, B. Biomolecule-based nanomaterials and nanostructures. Nano Lett. 2010, 10, 3805–3815. [Google Scholar] [CrossRef]
- Bostick, C.D.; Mukhopadhyay, S.; Pecht, I.; Sheves, M.; Cahen, D.; Lederman, D. Protein bioelectronics: A review of what we do and do not know. Rep. Prog. Phys. 2018, 81, 026601. [Google Scholar] [CrossRef]
- Yu, X.; Lovrincic, R.; Sepunaru, L.; Li, W.; Vilan, A.; Pecht, I.; Sheves, M.; Cahen, D. Insights into solid-state electron transport through proteins from inelastic tunneling spectroscopy: The case of azurin. ACS Nano 2015, 9, 9955–9963. [Google Scholar] [CrossRef]
- Kalyani, N.; Moudgil, A.; Das, S.; Mishra, P. Metalloprotein based scalable field effect transistor with enhanced switching behaviour. Sens. Actuators B Chem. 2017, 246, 363–369. [Google Scholar] [CrossRef]
- Artés, J.M.; Díez-Pérez, I.; Gorosiza, P. Transistor-like behavior of single metalloprotein junctions. Nano Lett. 2012, 12, 2679–2684. [Google Scholar] [CrossRef] [PubMed]
- Maruccio, G.; Biasco, A.; Visconti, P.; Bramanti, A.; Pompa, P.P.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Corni, S.; Di Felice, R.; et al. Towards protein field-effect transistors: Report and model of a prototype. Adv. Mater. Technol. 2005, 17, 816–822. [Google Scholar] [CrossRef]
- Rizzuti, B.; Sportelli, L.; Guzzi, R. Structural, dynamical and functional aspects of the inner motions in the blue copper protein azurin. Biophys. Chem. 2007, 125, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Moudgil, A.; Kalyani, N.; Mishra, P.; Das, S. Azurin-TiO2 hybrid nanostructure field effect transistor for efficient ultraviolet detection. Nanotechnology 2019, 30, 495205. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Cai, M.-L.; Gu, X.F.; Wu, G.-D. Starch as ion-based gate dielectric for oxide thin film transistors. Org. Electron. 2017, 45, 203–208. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Sun, H.-S.; Lee, W.-Y.; Halila, S.; Borsali, R.; Chen, W.-C. Oligosaccharide carbohydrate dielectrics toward high-performance non-volatile transistor memory devices. Adv. Mater. 2015, 27, 6257–6264. [Google Scholar] [CrossRef]
- Liang, L.; Liu, X.; Kanehara, M.; Kobayashi, N.; Minari, T. Layer-by-layer printing non-volatile organic thin-film transistor memory with a planarly-oriented DNA-complex dielectric. Org. Electron. 2018, 55, 75–81. [Google Scholar] [CrossRef]
- Kim, C.-H.; Bhak, G.; Lee, J.; Sung, S.; Park, S.; Paik, S.R.; Yoon, M.-H. Controlled charge trapping and retention in large-area monodisperse protein metal-nanoparticle conjugates. ACS Appl. Mater. Interfaces 2016, 8, 11898–11903. [Google Scholar] [CrossRef]
- Lee, J.; Bhar, G.; Lee, J.-H.; Par, W.; Lee, M.; Lee, D.; Jeon, N.L.; Jeong, D.H.; Char, K.; Paik, S.R. Free-standing gold-nanoparticle monolayer film fabricated by protein self-assembly of α-synuclein. Angew. Chem. Int. Ed. 2015, 54, 4571–4576. [Google Scholar] [CrossRef]
- Nishiori, D.; Zhu, W.; Salles, R.; Miyachi, M.; Yamanoi, Y.; Ikuta, T.; Maehashi, K.; Tomo, T.; Nishihara, H. Photosensing system using photosystem i and gold nanoparticle on graphene field-effect transistor. ACS Appl. Mater. Interfaces 2019, 11, 42773–42779. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C.; Lu, C.; Liu, C.-L.; Chen, W.-C. Single-crystal C60 needle/CuPc nanoparticle double floating-gate for low-voltage organic transistors based non-volatile memory devices. Adv. Mater. 2015, 27, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Hong, M.-Y.; Huang, G.S. A protein transistor made of an antibody molecule and two gold nanoparticles. Nat. Nanotechnol. 2012, 7, 197–203. [Google Scholar] [PubMed]
- Khaid, M. Review on Various Memristor Models, Characteristics, Potential Applications, and Future Works. Trans. Electr. Electron. Mater. 2019, 20, 289–298. [Google Scholar] [CrossRef]
- Hiruma, Y.; Yoshikawa, K.; Haga, M.-A. Bio-inspired protonic memristor devices based on metal complexes with proton-coupled electron transfer. Faraday Discuss. 2019, 213, 99–113. [Google Scholar] [CrossRef]
- Yong, J.; Hassan, B.; Liang, Y.; Ganesan, K.; Rajasekharan, R.; Evans, R.; Egan, G.; Kavehei, O.; Li, J.; Chana, G.; et al. A silk fibroin bio-transient solution processable memristor. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, H.-C.; Huang, C.-Y.; Chung, W.-L.; Wu, S.-L.; Su, Y.-K. Nonvolatile bio-memristor fabricated with egg albumen film. Sci. Rep. 2015, 5, 10022. [Google Scholar] [CrossRef]
- Cifarelli, A.; Parisini, A.; Iannotta, S.; Berzina, T. Organic memristive devices based on pectin as a solid polyelectrolyte. Microelectron. Eng. 2018, 185, 55–60. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Sabbaghi-Naddoshan, R.; Tavakoli, M.B. DNA implementation for optical waveguide as a switchable transmission line and memristor. Opt. Quantum Electron. 2018, 50, 196. [Google Scholar] [CrossRef]
- Chu, H.-L.; Lai, J.-J.; Wu, L.-Y.; Chang, S.-L.; Liu, C.-M.; Jian, W.-B.; Chen, Y.-C.; Yuan, C.-J.; Wu, T.-S.; Soo, Y.-L.; et al. Exploration and characterization of the memcapacitor and memristor properties of Ni–DNA nanowire devices. NPG Asia Mater. 2017, 9, e430. [Google Scholar] [CrossRef][Green Version]
- Qin, S.; Dong, R.; Yan, X.; Du, Q. A reproducible write–(read)n–erase and multilevel bio-memristor based on DNA molecule. Org. Electron. 2015, 22, 147–153. [Google Scholar] [CrossRef]
- MacVittie, K.; Katz, E. Self-powered electrochemical memristor based on a biofuel cell–towards memristors integrated with biocomputing systems. Chem. Comm. 2014, 50, 4816–4819. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Lee, T.; Yoo, S.Y.; Min, J.; Choi, J.W. Electrochemical bioelectronic device consisting of metalloprotein for analog decision making. Sci. Rep. 2015, 5, 14501. [Google Scholar] [CrossRef]
- Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent advances in immobilization methods of antibodies on solid supports. Analyst 2008, 133, 697–701. [Google Scholar] [CrossRef] [PubMed]
- North, S.H.; Lock, E.H.; Cooper, C.J.; Franek, J.B.; Taitt, C.R.; Walton, S.G. Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules. Acs Appl. Mater. Interfaces 2010, 2, 2884–2891. [Google Scholar] [CrossRef]
- Gunda, N.S.K.; Singh, M.; Norman, L.; Kaur, K.; Mitra, S.K. Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl)triethoxysilane (APTES) and glutaraldehyde linker. Appl. Surf. Sci. 2014, 305, 522–530. [Google Scholar] [CrossRef]
- Choi, J.W.; Oh, B.K.; Min, J.; Kim, Y.J. Protein-based biomemory device consisting of the cysteine-modified Azurin. Appl. Phys. Lett. 2007, 91, 263902. [Google Scholar] [CrossRef]
- Lee, T.; Chung, Y.H.; Yoon, J.; Min, J.; Choi, J.W. Fusion protein-based biofilm fabrication composed of recombinantazurin–myoglobin for dual-level biomemory application. Appl. Surf. Sci. 2014, 320, 448–454. [Google Scholar] [CrossRef]
- Kan, S.; Yoon, J.; Chung, Y.H.; Lee, T.; Min, J.; Choi, J.W. Dual-level biomemory device composed of cytochrome c/DNA/myoglobin heterolayer. J. Nanosci. Nanotechnol. 2016, 16, 8724–8727. [Google Scholar] [CrossRef]
- Yoon, J.; Chung, Y.H.; Lee, T.; Kim, J.H.; Kim, J.; Choi, J.W. A biomemory chip composed of myoglobin/CNT heterolayer fabricated by protein-adsorption-precipitation-crosslinking (PAPC) technique. Coll. Surf. B Biointerfaces 2015, 136, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Min, J.; Kim, S.U.; Choi, J.W. Multifunctional 4-bit biomemory chip consisting of recombinant azurin variants. Biomaterials 2011, 32, 3815–3821. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Yoo, S.Y.; Chung, Y.H.; Min, J.; Choi, J.W. Signal enhancement of electrochemical biomemory device composed of recombinant Azruin/Gold nanoparticale. Electroanalysis 2011, 23, 2023–2029. [Google Scholar] [CrossRef]
- Han, S.T.; Zhou, Y.; Xu, Z.X.; Roy, V.A.L.; Hung, T.F. Nanoparticle size dependent threshold voltage shifts in organic memory transistors. J. Mater. Chem. 2011, 21, 14575–14580. [Google Scholar] [CrossRef]
- Guo, L.; Wang, A.; Hu, P.; Tian, A.; Hao, R.; Yu, D.; Yang, J.; Chen, D.; Wang, H. Renewable juglone nanowires with size-dependent charge storage properties. RSC Adv. 2018, 8, 2077–2081. [Google Scholar] [CrossRef]
- Abbas, Z.; Labbez, C.; Nordholm, S.; Ahlberg, E. Size-dependent surface charging of nanoparticles. J. Phys. Chem. C 2008, 112, 5715–5723. [Google Scholar] [CrossRef]
- Katz, E.; MacVittie, K. Implanted biofuel cells operating in vivo–methods, applications and perspectives. Energy Environ. Sci. 2013, 6, 2791–2803. [Google Scholar] [CrossRef]
- MacVittie, K.; Halámek, J.; Halámková, L.; Southcott, M.; Jemison, W.D.; Lobeld, R.; Katz, E. From “cyborg” lobsters to a pacemaker powered by implantable biofuel cells. Energy Environ. Sci. 2013, 6, 81–86. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.; Kim, S.; Kim, J.; Park, S.-C.; Yoon, J.; Park, C.; Sohn, H.; Ahn, J.-H.; Min, J. Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials 2020, 13, 3520. https://doi.org/10.3390/ma13163520
Lee T, Kim S, Kim J, Park S-C, Yoon J, Park C, Sohn H, Ahn J-H, Min J. Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials. 2020; 13(16):3520. https://doi.org/10.3390/ma13163520
Chicago/Turabian StyleLee, Taek, Soomin Kim, Jinmyeong Kim, Sang-Chan Park, Jinho Yoon, Chulhwan Park, Hiesang Sohn, Jae-Hyuk Ahn, and Junhong Min. 2020. "Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications" Materials 13, no. 16: 3520. https://doi.org/10.3390/ma13163520
APA StyleLee, T., Kim, S., Kim, J., Park, S.-C., Yoon, J., Park, C., Sohn, H., Ahn, J.-H., & Min, J. (2020). Recent Advances in Biomolecule–Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications. Materials, 13(16), 3520. https://doi.org/10.3390/ma13163520