Microstructure and Mechanical Properties of Pressure-Quenched SS304 Stainless Steel
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Procedures
3. Results and Discussion
3.1. Microstructure
3.2. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sedriks, A.J. Corrosion of Stainless Steels. Encycl. Mater. Sci. Technol. 2001, 40, 1707–1708. [Google Scholar] [CrossRef]
- Tide, C.; Harkin, S.R.; Geesey, G.G.; Bremer, P.J.; Scholz, W. The influence of welding procedures on bacterial colonization of stainless steel weldments. J. Food Eng. 1999, 42, 85–96. [Google Scholar] [CrossRef]
- Liu, W.; Wang, R.; Han, J.; Xu, X.; Li, Q. Microstructure and mechanical performance of resistance spot-welded cold-rolled high strength austenitic stainless steel. J. Mater. Process. Technol. 2010, 210, 1956–1961. [Google Scholar] [CrossRef]
- Finšgar, M.; Milošev, I. Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid. Corros. Sci. 2010, 52, 2430–2438. [Google Scholar] [CrossRef]
- Kuang, W.; Han, E.H.; Wu, X.; Rao, J. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water. Corros. Sci. 2010, 52, 3654–3660. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ma, E. Strain hardening, strain rate sensitivity, and ductility of nanostructured metals. Mater. Sci. Eng. A 2004, 375–377, 46–52. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Zhou, F.; Ma, E. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–915. [Google Scholar] [CrossRef] [PubMed]
- Valiev, R. Nanomaterial advantage. Nature 2002, 419, 887–889. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304, 422–426. [Google Scholar] [CrossRef]
- Lu, K.; Wang, J.T.; Wei, W.D. A New Method for Synthesizing Nanocrystalline Alloys. J. Appl. Phys. 1991, 69, 522–524. [Google Scholar] [CrossRef]
- Oehring, M.; Bormann, R. Nanocrystalline alloys prepared by mechanical alloying and ball milling. Mater. Sci. Eng. A 1991, 134, 1330–1333. [Google Scholar] [CrossRef]
- Peng, W.; Zhang, J.; Yang, Z.; Wang, H.; Hu, W.; Yu, D. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure. Prog. Nat. Sci. 2016, 26, 404–410. [Google Scholar] [CrossRef]
- Birringer, R. Nanocrystalline materials. Mater. Sci. Eng. A 1989, 117, 33–43. [Google Scholar] [CrossRef]
- Qin, Z.C.; Liu, Y.; Zhang, Y.; Liu, W.; Wang, W.K. Bulk nanophase Pd82Si18 directly synthesized by high pressure quenching from melt of alloy. J. Mater. Sci. Lett. 1995, 14, 209–210. [Google Scholar] [CrossRef]
- Li, D.; Wang, A.; Yao, B.; Ding, B.; Hu, Z. Synthesis of bulk nanocrystalline Ti–Cu alloy by pressure-quenching method. J. Mater. Res. 1996, 11, 2685–2688. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Ding, B.Z.; Zhang, H.F.; Li, D.J.; Yao, B.; Liu, H.Z.; Wang, A.M. Formation of non-equilibrium alloys by high pressure melt quenching. Sci. Technol. Adv. Mater. 2001, 2, 41–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.; Wang, P.; Zhao, Z.; Liu, Z.; He, J.; Xu, B.; Tian, Y.; Yu, D. Strengthening in high-pressure quenched Zr. High Press. Res. 2017, 37, 1–9. [Google Scholar] [CrossRef]
- Kawasaki, S.; Yamanaka, T.; Kume, S.; Ashida, T. Effect of hydrostatic pressure on martensitic transformations in Fe-Ni and Fe-Ni-C alloys. Neuroreport 2007, 2, 751–754. [Google Scholar] [CrossRef]
- Ebihara, T.; Uwatoko, Y.; Mohri, N. Electrical resistivity in Ce 3 Al 11 under high pressure. J. Magn. Magn. Mater. 2004, 272, E83–E84. [Google Scholar] [CrossRef]
- Hänström, A.; Lazor, P. High pressure melting and equation of state of aluminium. J. Alloys Compd. 2000, 305, 209–215. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Tang, J.; He, Q.; Li, S.; Peng, F.; He, D.; Zhang, L.; Fei, Y. A large volume cubic press with a pressure-generating capability up to about 10 GPa. High Press. Res. 2012, 32, 239–254. [Google Scholar] [CrossRef]
- Decker, D.L.; Bassett, W.A.; Merrill, L.; Hall, H.T.; Barnett, J.D. High Pressure Calibration. A Critical Review. J. Phys. Chem. Ref. Data 1972, 1, 773–836. [Google Scholar] [CrossRef]
- Lutterotti, L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Matache, G.; Stefanescu, D.M.; Puscasu, C.; Alexandrescu, E. Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy. Int. J. Cast Met. Res. 2016, 29, 303–316. [Google Scholar] [CrossRef]
C | Cr | Ni | Si | Mn | Fe |
---|---|---|---|---|---|
0.06 | 18.12 | 8.72 | 0.41 | 1.42 | balance |
Sample | Hardness (GPa) | Standard Deviation |
---|---|---|
As-received SS304 | 2.06 | 0.09 |
Melted zone of PQ SS304 | 2.74 | 0.14 |
Non-melted zone of PQ SS304 | 1.94 | 0.11 |
Sample | Yield strength (MPa) | Ultimate tensile strength (MPa) | Elongation (%) |
---|---|---|---|
As received SS304 | 374 | 780 | 44 |
PQ SS304 | 698 | 783 | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhang, Y.; Yu, D. Microstructure and Mechanical Properties of Pressure-Quenched SS304 Stainless Steel. Materials 2019, 12, 290. https://doi.org/10.3390/ma12020290
Wang P, Zhang Y, Yu D. Microstructure and Mechanical Properties of Pressure-Quenched SS304 Stainless Steel. Materials. 2019; 12(2):290. https://doi.org/10.3390/ma12020290
Chicago/Turabian StyleWang, Peng, Yang Zhang, and Dongli Yu. 2019. "Microstructure and Mechanical Properties of Pressure-Quenched SS304 Stainless Steel" Materials 12, no. 2: 290. https://doi.org/10.3390/ma12020290
APA StyleWang, P., Zhang, Y., & Yu, D. (2019). Microstructure and Mechanical Properties of Pressure-Quenched SS304 Stainless Steel. Materials, 12(2), 290. https://doi.org/10.3390/ma12020290