# Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

## 3. Materials and Methods

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Basu, S.; Chen, Y.; Zhang, Z. Microscale radiation in thermophotovoltaic devices-a review. Int. J. Energy Res.
**2007**, 31, 689–716. [Google Scholar] [CrossRef] - Bosi, M.; Ferrari, C.; Melino, F.; Pinelli, M.; Spina, P.; Venturini, M. Thermophotovoltaic generation: A state of the art review. In Proceedings of the 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes, Perugia, Italy, 26–29 June 2012. [Google Scholar]
- Coutts, T. A review of progress in thermophotovoltaic generation of electricity. Renew. Sustain. Energy Rev.
**1999**, 3, 77–184. [Google Scholar] [CrossRef] - Tong, J.K.; Hsu, W.C.; Huang, Y.; Boriskina, S.V.; Chen, G. Thin-film ‘thermal well’emitters and absorbers for high-efficiency thermophotovoltaics. Sci. Rep.
**2015**, 5, 10661. [Google Scholar] [CrossRef] [PubMed] - Harder, N.P.; Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol.
**2003**, 18, S151. [Google Scholar] [CrossRef] - Rephaeli, E.; Fan, S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express
**2009**, 17, 15145–15159. [Google Scholar] [CrossRef] [PubMed] - Wurfel, P.; Ruppel, W. Upper limit of thermophotovoltaic solar-energy conversion. IEEE Trans. Electron Devices
**1980**, 27, 745–750. [Google Scholar] [CrossRef] - Bermel, P.; Ghebrebrhan, M.; Chan, W.; Yeng, Y.X.; Araghchini, M.; Hamam, R.; Marton, C.H.; Jensen, K.F.; Soljačić, M.; Joannopoulos, J.D.; et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express
**2010**, 18, A314–A334. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Tyler, T.; Starr, T.; Starr, A.F.; Jokerst, N.M.; Padilla, W.J. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett.
**2011**, 107, 045901. [Google Scholar] [CrossRef] [PubMed] - Wu, C.; Neuner, B., III; John, J.; Milder, A.; Zollars, B.; Savoy, S.; Shvets, G. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt.
**2012**, 14, 024005. [Google Scholar] [CrossRef] - Molesky, S.; Dewalt, C.J.; Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Opt. Express
**2013**, 21, A96–A110. [Google Scholar] [CrossRef] [PubMed] - Nagpal, P.; Han, S.E.; Stein, A.; Norris, D.J. Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals. Nano Lett.
**2008**, 8, 3238–3243. [Google Scholar] [CrossRef] [PubMed] - Arpin, K.A.; Losego, M.D.; Cloud, A.N.; Ning, H.; Mallek, J.; Sergeant, N.P.; Zhu, L.; Yu, Z.; Kalanyan, B.; Parsons, G.N.; et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun.
**2013**, 4. [Google Scholar] [CrossRef] [PubMed] - Heinzel, A.; Boerner, V.; Gombert, A.; Bläsi, B.; Wittwer, V.; Luther, J. Radiation filters and emitters for the NIR based on periodically structured metal surfaces. J. Mod. Opt.
**2000**, 47, 2399–2419. [Google Scholar] [CrossRef] - Fleming, J.; Lin, S.; El-Kady, I.; Biswas, R.; Ho, K. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature
**2002**, 417, 52–55. [Google Scholar] [CrossRef] [PubMed] - Sai, H.; Kanamori, Y.; Yugami, H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. J. Micromech. Microeng.
**2005**, 15, S243. [Google Scholar] [CrossRef] - Ghanekar, A.; Sun, M.; Zhang, Z.; Zheng, Y. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications. J. Therm. Sci. Eng. Appl.
**2007**, 10, 011004. [Google Scholar] - Woolf, D.; Hensley, J.; Cederberg, J.; Bethke, D.; Grine, A.; Shaner, E. Heterogeneous metasurface for high temperature selective emission. Appl. Phys. Lett.
**2014**, 105, 081110. [Google Scholar] [CrossRef] - Narayanaswamy, A.; Chen, G. Surface modes for near field thermophotovoltaics. Appl. Phys. Lett.
**2003**, 82, 3544–3546. [Google Scholar] [CrossRef] - DiMatteo, R.; Greiff, P.; Seltzer, D.; Meulenberg, D.; Brown, E.; Carlen, E.; Kaiser, K.; Finberg, S.; Nguyen, H.; Azarkevich, J.; et al. Micron-gap T hermo P hoto V oltaics (MTPV). AIP Conf. Proc.
**2004**, 738, 42–51. [Google Scholar] - Laroche, M.; Carminati, R.; Greffet, J.J. Near-field thermophotovoltaic energy conversion. J. Appl. Phys.
**2006**, 100, 063704. [Google Scholar] [CrossRef] - Park, K.; Basu, S.; King, W.P.; Zhang, Z. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution. J. Quant. Spectrosc. Radiat. Transf.
**2008**, 109, 305–316. [Google Scholar] [CrossRef] - Francoeur, M.; Vaillon, R.; Mengüç, M.P. Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators. IEEE Trans. Energy Convers.
**2011**, 26, 686–698. [Google Scholar] [CrossRef] - Bright, T.; Wang, L.; Zhang, Z. Performance of near-field thermophotovoltaic cells enhanced with a backside reflector. J. Heat Transf.
**2014**, 136, 062701. [Google Scholar] [CrossRef] - Ghanekar, A.; Lin, L.; Su, J.; Sun, H.; Zheng, Y. Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes. Opt. Express
**2015**, 23, A1129–A1139. [Google Scholar] [CrossRef] [PubMed] - Ghanekar, A.; Lin, L.; Zheng, Y. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Opt. Express
**2016**, 24, A868–A877. [Google Scholar] [CrossRef] [PubMed] - Francoeur, M.; Basu, S.; Petersen, S.J. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Opt. Express
**2011**, 19, 18774–18788. [Google Scholar] [CrossRef] [PubMed] - Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today
**2009**, 12, 60–69. [Google Scholar] [CrossRef] - Wheeler, M.S.; Aitchison, J.S.; Mojahedi, M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Phys. Rev. B
**2005**, 72, 193103. [Google Scholar] [CrossRef] - Adachi, S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, Al
_{x}Ga_{1-x}As, and In_{1-x}Ga_{x}As_{y}P_{1-y}. J. Appl. Phys.**1989**, 66, 6030–6040. [Google Scholar] [CrossRef] - Ji, T.; Peng, L.; Zhu, Y.; Yang, F.; Cui, Y.; Wu, X.; Liu, L.; He, S.; Zhu, F.; Hao, Y. Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers. Appl. Phys. Lett.
**2015**, 106, 161107. [Google Scholar] [CrossRef] - Sakurai, A.; Kawamata, T. Electromagnetic resonances of solar-selective absorbers with nanoparticle arrays embedded in a dielectric layer. J. Quant. Spectrosc. Radiat. Transf.
**2016**, 184, 353–359. [Google Scholar] [CrossRef] - Reed, J.S. Principles of Ceramics Processing; Wiley: Hoboken, NJ, USA, 1995. [Google Scholar]
- Sahoo, P.K.; Kamal, S.K.; Premkumar, M.; Kumar, T.J.; Sreedhar, B.; Singh, A.; Srivastava, S.; Sekhar, K.C. Synthesis of tungsten nanoparticles by solvothermal decomposition of tungsten hexacarbonyl. Int. J. Refract. Met. Hard Mater.
**2009**, 27, 784–791. [Google Scholar] [CrossRef] - Rodriguez-Suarez, T.; Diaz, L.; Lopez-Esteban, S.; Pecharroman, C.; Esteban-Cubillo, A.; Gremillard, L.; Torrecillas, R.; Moya, J. Epitaxial growth of tungsten nanoparticles on alumina and spinel surfaces. Nanotechnology
**2008**, 19, 215605. [Google Scholar] [CrossRef] [PubMed] - Narayanaswamy, A.; Zheng, Y. A Green’s function formalism of energy and momentum transfer in fluctuational electrodynamics. J. Quant. Spectrosc. Radiat. Transf.
**2014**, 132, 12–21. [Google Scholar] [CrossRef] - Chew, W.C. Waves and Fields in Inhomogeneous Media; IEEE Press: New York, NY, USA, 1995. [Google Scholar]
- Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A.M.; Novo, C.; Mulvaney, P.; Liz-Marzán, L.M.; de Abajo, F.J.G. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev.
**2008**, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed] - Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer: Berlin, Germany, 1995; Volume 25. [Google Scholar]
- Doyle, W.T. Optical properties of a suspension of metal spheres. Phys. Rev. B
**1989**, 39, 9852. [Google Scholar] [CrossRef] - Wheeler, M.S. A Scattering-Based Approach to the Design, Analysis, and Experimental Verification of Magnetic Metamaterials Made from Dielectrics. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2010. [Google Scholar]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc.-Rapid Publ.
**2013**, 8, 13010. [Google Scholar] [CrossRef] - Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt.
**1998**, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed] - Timans, P. Advances in Rapid Thermal and Integrated Processing; Roozeboom, F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- McKelvey, J.P. Solid State and Semiconductor Physics; Harper & Row: Manhattan, NY, USA, 1966. [Google Scholar]

**Figure 1.**Schematic of near-field thermophotovoltaic system consisting of the proposed thermal emitter and GaSb-based PV cell at separation less than the thermal wavelength.

**Figure 2.**Real (n) and imaginary ($\kappa $) parts of refractive indices of pure SiO${}_{2}$ and SiO${}_{2}$ with 30% tungsten nanoparticles.

**Figure 3.**Spectral heat flux across the proposed emitter and the GaSb photovoltaic (PV) cell at a separation of L = 100 nm for (

**a**) various volume fractions of W nanoparticles—0%, 15% and 30%—compared to bulk W emitter; (

**b**) Various thicknesses of SiO${}_{2}$ layer—0.3 $\mathsf{\mu}$m, 1 $\mathsf{\mu}$m, 5 $\mathsf{\mu}$m, and bulk respectively.

**Figure 4.**Predicted spectral density of output power (dashed lines) from GaSb PV cell for emitter with pure SiO${}_{2}$ thin film and SiO${}_{2}$ with 30% of W nanoparticles for a separation of 100 nm compared with corresponding spectral heat fluxes (solid lines).

**Figure 5.**Total heat flux (solid lines) and output power (dashed lines) of PV cell as a function of separation between the emitter and PV cell for an emitter of pure SiO${}_{2}$ film of 0.5 $\mathsf{\mu}$m and SiO${}_{2}$ films with W nanoparticles. Inset shows overall efficiency of the corresponding thermophotovoltaic (TPV) systems plotted as a function of separation. NP: nanoparticle.

**Figure 6.**Spectral heat flux across the emitter consisting of nanoparticles of alternative materials and the GaSb PV cell at a separation of $L=100$ nm for a nanoparticles volume fraction of 30%.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ghanekar, A.; Tian, Y.; Zhang, S.; Cui, Y.; Zheng, Y.
Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems. *Materials* **2017**, *10*, 885.
https://doi.org/10.3390/ma10080885

**AMA Style**

Ghanekar A, Tian Y, Zhang S, Cui Y, Zheng Y.
Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems. *Materials*. 2017; 10(8):885.
https://doi.org/10.3390/ma10080885

**Chicago/Turabian Style**

Ghanekar, Alok, Yanpei Tian, Sinong Zhang, Yali Cui, and Yi Zheng.
2017. "Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems" *Materials* 10, no. 8: 885.
https://doi.org/10.3390/ma10080885