Skip Content
You are currently on the new version of our website. Access the old version .
EnergiesEnergies
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

30 January 2026

A Finite Control Set–Model Predictive Control Method for Hybrid AC/DC Microgrid Operation with PV, Wind Generation, and Energy Storage System

,
and
School of Electrical & Information Engineering, Tianjin University, Tianjin 300072, China
*
Author to whom correspondence should be addressed.
This article belongs to the Section F1: Electrical Power System

Abstract

The global transition towards decentralized, decarbonized energy systems worldwide must include robust methods for controlling hybrid AC/DC microgrids to integrate diverse renewables and storage technologies effectively. This paper presents a Finite Control Set–Model Predictive Control (FCS-MPC) architecture for coordinated control of a hybrid microgrid comprising photovoltaic and wind generation, along with an energy storage system and MATLAB/Simulink component-level modeling. The islanded and grid-connected modes of operation are seamlessly simulated at the component level, ensuring maximum power point tracking and stability. The method has been experimentally validated through dynamic simulations across a range of operating conditions, demonstrating good performance: PV and wind MPPT efficiency > 99%, DC-link voltage control with < 2% overshoot, AC voltage THD < 3%, and efficient grid synchronization. It is superior to conventional PID and sliding mode control in terms of dynamic response, voltage deviation (reduced compared to before), and power quality. The proposed FCS-MPC is an all-in-one solution to enhance the stability, reliability, and efficiency of modern hybrid microgrids.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.