Abstract
Aiming at the insufficient capture of temporal dependence and weak coupling of external factors in multivariate load forecasting, this paper proposes a Transformer model integrating timestamp-based positional embedding and convolution-augmented attention. The model enhances temporal modeling capability through timestamp-based positional embedding, optimizes local contextual representation via convolution-augmented attention, and achieves deep fusion of load data with external factors such as temperature, humidity, and electricity price. Experiments based on the 2018 full-year load dataset for a German region show that the proposed model outperforms single-factor and multi-factor LSTMs in both short-term (24 h) and long-term (cross-month) forecasting. The research results verify the model’s accuracy and stability in multivariate load forecasting, providing technical support for smart grid load dispatching.