Abstract
Thermally driven heat pumps primarily use thermal energy to drive a compression cycle. The thermal energy can be waste heat, natural-gas combustion, or solar, helping increase efficiency and reduce greenhouse-gas emissions. We study a thermal compressor heat pump (TCHP) in which Stirling-type thermal compressors (TCs) are heat-driven rather than electrically driven, delivering a nominal heat capacity of 8 kW with CO as the refrigerant. Unlike most existing dynamic models of CO cycles, which focus on electrically driven or single-stage systems, this work targets a heat-driven multi-stage configuration and includes transient validation. Like any vapor compression cycle (VCC), a TCHP requires a dynamic model for control and optimization; its predictive reliability must be validated on experimental data. We therefore describe the test bench and performance expressions, collect steady-state and transient datasets, and derive a hybrid dynamic model: finite-volume (FV) differential equations for slow components and quasi-static submodels (linear regressions and correlations) for fast elements. The contribution of this work is the development and experimental validation of a hybrid FV model for a multi-stage heat-driven CO TCHP. Validation against both steady-state and transient datasets shows good agreement. On 15 steady-state operating points, the model reproduces pressures within ∼1 bar mean absolute error (MAE) and system-level performance (total recovered heat, ) within ∼6% mean absolute percentage error (MAPE), with ; component heat-rate predictions are within ∼20% MAPE. Under transient step tests on expansion valve openings and burner fan speed, the thermal COP and total recovered heat track within MAPE (up to ), pressures within bar MAE, and the evaporator heat rate within 14– MAPE.