Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators
Abstract
:1. Introduction
2. Physical Model
3. Numerical Study
3.1. Governing Equations
3.2. Boundary Conditions
- (1)
- At the inlet:
- (2)
- At the outlet:
- (3)
- At the external wall surface of the heat transfer tube:
- (4)
- No-slip condition is applied at the walls of the ITWL-VGs and tube surface.
3.3. Validation of Grid Independence
4. Experimental Setup
4.1. Experiment Set and Sample
4.2. Uncertainty Analysis
5. Data Reduction
6. Results and Discussion
6.1. Validation of Numerical Results and Experiment Data
6.2. The Effect of the Number of ITWs
6.3. The Effect of the Angle of Attack
6.4. The Effect of the Arrangement of the ITWL-VGs
6.5. Comprehensive Performance
7. Conclusions
- (1)
- Uniformly arranged ITWL-VGs with an optimal α demonstrate an enhanced thermal performance with an increasing N, as additional longitudinal vortices downstream of the VGs intensify fluid mixing. This phenomenon significantly improves the PEC, with N4α30°-A2, N6α30°-A2, and N8α30°-A2 exhibiting particularly notable heat transfer enhancement;
- (2)
- The Nu, f, and PEC exhibit positive correlations with α. The results indicate that α ≥ 30° is essential for effective heat transfer enhancement, as demonstrated by the superior performance of the N4α30°-A2 and N4α45°-A2 configurations;
- (3)
- While an increased LP improves the thermal performance under fixed tube length and N conditions, an excessive LP beyond the study’s scope would degrade the performance. This suggests the existence of an optimal LP value for maximizing heat transfer enhancement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A | heat transfer area of heat exchange tube, m2 | u | Velocity, m/s |
cp | Specific heat, J/(kg∙K) | Uinlet | Inlet velocity of air, m/s |
Di | Inner diameter, m | Yk | Dissipation of k due to turbulence |
f | Friction factor | Yω | Dissipation of ω due to turbulence |
fref,0 | Friction factor of smooth tube | Greek symbol | |
Gk | Produced turbulent kinetic energy | α | Angle of attack, deg |
Gω | Specific dissipation rate | Γk | Effective diffusivity of k |
h | Heat transfer coefficient, W/(m2·K) | Γω | Effective diffusivity of ω |
I | Turbulence intensity | ΔP | Pressure drop, Pa |
k | Turbulent kinetic energy, m2/s2 | ΔTm | Mean temperature difference, K |
L | Tube length, m | ε | Dissipation rate of turbulence energy, m3/s2 |
LP | Spacing of VGs, m | λ | Thermal conductivity, W/(m·K) |
m | Mass flow rate, kg/s | µ | Viscosity of fluid, Pa·s |
N | Number of ITWLs | ρ | Density, kg/m3 |
Nu | Nusselt number | Subscripts | |
Nuref,0 | Nusselt number of smooth tube | air | Air |
p | Pressure, Pa | ave | Average |
PEC | Thermal enhancement factor | inlet | Inlet |
Pr | Prandtl number | outlet | Outlet |
Q | Heat transfer rate, W | water | Water |
Re | Reynolds number | W | Wall |
T | Temperature, K | x, y, z | Coordinate system components |
References
- Kamaei, R.; Izadi, M.; Altnji, S.; Majdoub, F.; Hajjar, A.; Alqurashi, F.; Mohamed, M.H.; Hamida, M.B.B. All-around review on applying passive strategies to improve heat exchanger performance using inserts and turbulators applied in thermal storage. Int. Commun. Heat Mass Transf. 2024, 159, 108234. [Google Scholar]
- Wang, Q.; Tao, J.; Cui, Z.; Zhang, T.; Chen, G. Passive enhanced heat transfer, hotspot management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review. Int. J. Heat Fluid Flow 2024, 107, 109368. [Google Scholar]
- Diaconu, B.M.; Cruceru, M.; Anghelescu, L. A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization. J. Energy Storage 2023, 61, 106830. [Google Scholar]
- Jiang, W.B.; Du, L.; Wei, H.F.; Sun, H.L. The influence of urban new energy development orientation on new energy technology innovation in firms. Renew. Energy 2024, 237, 121873. [Google Scholar]
- Liu, L.; Shen, T.; Zhang, L.; Peng, H.; Zhang, S.L.; Xu, W.G.; Bo, S.; Qu, S.Z.; Ni, X.M. Experimental and numerical investigation on shell-and-tube exhaust gas recirculation cooler with different tube bundles. Heat Mass Transf. 2020, 56, 601–615. [Google Scholar] [CrossRef]
- Kondratiev, V.V.; Sysoev, I.A.; Kolosov, A.D.; Galishnikova, V.V.; Gladkikh, V.A.; Karlina, A.I.; Karlina, Y.I. Development and testing of the thermoelectric thermal energy conversion device in the conditions of existing aluminum production. Materials 2022, 15, 8526. [Google Scholar] [CrossRef]
- Hood, K.; Walsh, M.; Zolan, A.; Jackson, G.; Newman, A. Characterizing and improving the performance of molten-salt-steam heat exchangers in concentrating solar power plants. Energy. Convers. Manage. 2024, 315, 118721. [Google Scholar]
- Yahya, M.; Rachman, A.; Hasibuan, R. Performance analysis of solar-biomass hybrid heat pump batch-type horizontal fluidized bed dryer using multi-stage heat exchanger for paddy drying. Energy 2022, 254, 124294. [Google Scholar]
- Sun, C.Z.; Li, Y.X.; Han, H.; Geng, X.Y.; Lu, X. Numerical and experimental study on the falling film flow characteristics with the effect of co-current gas flow in hydrogen liquefaction process. Petrol. Sci. 2024, 21, 1369–1384. [Google Scholar]
- Zheng, N.B.; Yan, F.; Zhang, K.; Zhou, T.; Sun, Z.Q. A review on single-phase convective heat transfer enhancement based on multi-longitudinal vortices in heat exchanger tubes. Appl. Therm. Eng. 2020, 164, 114475. [Google Scholar]
- Liu, L.; Sun, T.; Cao, Y.; Yu, X.L.; Zhang, L.; Cao, Z.Y.; Zhang, L.; Xu, W.G.; Bu, S. Experimental and numerical investigation on the flow and heat transfer characteristics of the tube with an integrated internal longitudinal fin. Int. J. Therm. Sci. 2023, 183, 107857. [Google Scholar] [CrossRef]
- Abolarin, S.M.; Everts, M.; Meyer, J.P. Heat transfer and pressure drop characteristics of alternating clockwise and counter clockwise twisted tape inserts in the transitional flow regime. Int. J. Heat Mass Transf. 2019, 133, 203–217. [Google Scholar] [CrossRef]
- Hong, Y.X.; Zhao, L.; Huang, Y.C.; Li, Q.; Jiang, J.J.; Du, J. Turbulent thermal-hydraulic characteristics in a spiral corrugated waste heat recovery heat exchanger with perforated multiple twisted tapes. Int. J. Therm. Sci. 2023, 184, 108025. [Google Scholar] [CrossRef]
- Alsharifi, T.; Sultan Aljibori, H.S.; Mahdi, J.M. Design optimization and performance evaluation of a photovoltaic/thermal collector with porous twisted tape inserts: A comprehensive energy and exergy analysis. Int. Commun. Heat Mass Transf. 2024, 159, 108104. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Z.Y.; Shen, T.; Zhang, L.; Zhang, L. Experimental and numerical investigation on flow and heat transfer characteristics of a multi-waves internally spiral finned tube. Int. J. Heat Mass Transf. 2021, 172, 121104. [Google Scholar] [CrossRef]
- Feng, Z.F.; Luo, X.P.; Guo, F.; Li, H.Y.; Zhang, J.X. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl. Therm. Eng. 2017, 116, 597–609. [Google Scholar] [CrossRef]
- Celik, N.; Tasar, B.; Kapan, S.; Tanyildizi, V. Performance optimization of a heat exchanger with coiled-wire turbulator insert by using various machine learning methods. Int. J. Therm. Sci. 2023, 192, 108439. [Google Scholar] [CrossRef]
- Khedher, N.B.; Mehryan, S.A.M.; Medani, M.; Selim, M.M.; Elbashir, N.B.M.; Boujelbene, M. Enhancing the efficiency of a double tube heat exchanger via a novel vibrating woven wire turbulator combined with a helical coiled wire; an experimental study. Appl. Therm. Eng. 2024, 248, 123121. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Essa, M.A.; Mostafa, N.H. A computational study of heat transfer analysis for a circular tube with conical ring turbulators. Int. J. Therm. Sci. 2019, 137, 138–160. [Google Scholar] [CrossRef]
- Hassan, M.A.; Al-Tohamy, A.H.; Kaood, A. Hydrothermal characteristics of turbulent flow in a tube with solid and perforated conical rings. Int. Commun. Heat Mass Transf. 2022, 134, 106000. [Google Scholar] [CrossRef]
- Rinik, R.A.; Bhuiyan, A.A.; Karim, M.R. Enhancement of heat transfer using elliptical twisted inner pipe with convergent conical ring turbulator for turbulent flow in double pipe heat exchanger. Int. J. Therm. Sci. 2025, 210, 109558. [Google Scholar]
- Skullong, S.; Promvonge, P.; Thianpong, C.; Jayranaiwachira, N. Thermal behaviors in a round tube equipped with quadruple perforated-delta-winglet pairs. Appl. Therm. Eng. 2017, 115, 229–243. [Google Scholar]
- Wu, J.; Liu, P.; Yu, M.; Liu, Z.; Liu, W. Thermo-hydraulic performance and exergy analysis of a fin-and-tube heat exchanger with sinusoidal wavy winglet type vortex generators. Int. J. Therm. Sci. 2022, 172, 107274. [Google Scholar]
- Schubauer, G.B.; Spangenberg, W.G. Forced mixing in boundary layers. J. Fluid Mech. 1960, 8, 10–32. [Google Scholar]
- Johnson, T.R.; Joubert, P.N. The influence of vortex generators on the drag and heat transfer from a circular cylinder normal to an airstream. ASME J. Heat Transf. 1969, 91, 91–99. [Google Scholar] [CrossRef]
- Jacobi, A.M.; Shah, R.K. Heat transfer surface enhancement through the use of longitudinal vortices: A review of recent progress. Exp. Therm. Fluid Sci. 1995, 11, 295–309. [Google Scholar]
- Fiebig, M. Embedded vortices in internal flow: Heat transfer and pressure loss enhancement. Int. J. Heat Fluid Flow 1995, 16, 376–388. [Google Scholar]
- Awais, M.; Bhuiyan, A.A. Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Therm. Sci. Eng. Prog. 2018, 5, 524–545. [Google Scholar]
- Liu, C.Q.; Gao, Y.S.; Dong, X.R.; Wang, Y.Q.; Liu, J.M.; Zhang, Y.N.; Cai, X.S.; Gui, N. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 2019, 31, 205–223. [Google Scholar]
- Yakut, K.; Sahin, B.; Celik, C.; Alemdaroglu, N.; Kurnuc, A. Effects of tapes with double-sided delta-winglets on heat and vortex characteristics. Appl. Energy 2005, 80, 77–95. [Google Scholar]
- Zhou, G.B.; Ye, Q.L. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl. Therm. Eng. 2012, 37, 241–248. [Google Scholar] [CrossRef]
- Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M. Experimental investigations of diesel exhaust exergy recovery using delta winglet vortex generator heat exchanger. Int. J. Therm. Sci. 2015, 93, 52–63. [Google Scholar] [CrossRef]
- Xu, Y.; Islam, M.D.; Kharoua, N. Numerical study of winglets vortex generator effects on thermal performance in a circular pipe. Int. J. Therm. Sci. 2017, 112, 304–317. [Google Scholar]
- Esmaeilzadeh, A.; Amanifard, N.; Deylami, H.M. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Appl. Therm. Eng. 2017, 125, 1414–1425. [Google Scholar]
- Xiao, H.; Dong, Z.M.; Liu, Z.C.; Liu, W. Heat transfer performance and flow characteristics of solar air heaters with inclined trapezoidal vortex generators. Appl. Therm. Eng. 2020, 179, 115484. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Zhang, K.; Li, W.H.; Chen, Q.; Zheng, N.B. Investigations of the turbulent thermal-hydraulic performance in circular heat exchanger tubes with multiple rectangular winglet vortex generators. Appl. Therm. Eng. 2020, 168, 114838. [Google Scholar]
- Sun, Z.Q.; Chen, Q.; Zheng, N.B. Experimental and numerical studies of intensified turbulent heat transfer in round pipes with curved wing vortex generators. Int. J. Heat Mass Transf. 2021, 180, 121823. [Google Scholar]
- Zheng, S.Y.; Feng, Z.F.; Lin, Q.Y.; Hu, Z.J.; Lan, Y.Q.; Guo, F.W.; Huang, K.; Yu, F. Numerical investigation on thermal–hydraulic characteristics in a mini-channel with trapezoidal cross-section longitudinal vortex generators. Appl. Therm. Eng. 2022, 205, 118004. [Google Scholar]
- Promvonge, P.; Promthaisong, P.; Skullong, S. Thermal performance augmentation in round tube with louvered V-winglet vortex generator. Int. J. Heat Mass Transf. 2022, 182, 121913. [Google Scholar]
- Saini, P.; Dhar, A.; Powar, S. Performance enhancement of fin and tube heat exchanger employing curved trapezoidal winglet vortex generator with circular punched holes. Int. J. Heat Mass Transf. 2023, 209, 124142. [Google Scholar] [CrossRef]
- Fu, H.; Sun, H.O.; Yang, L.F.; Yan, L.Y.; Luan, Y.G.; Magagnato, F. Effects of the configuration of the delta winglet longitudinal vortex generators and channel height on flow and heat transfer in minichannels. Appl. Therm. Eng. 2023, 227, 120401. [Google Scholar] [CrossRef]
- Torbatinejad, A.; Hosseini, M.J.; Pahamli, Y. Enhancement of heat dissipation in a minichannel by different structural designs of vortex generators and aluminum oxide hydroxide nanoparticles. Int. J. Heat Fluid Flow 2024, 107, 109429. [Google Scholar] [CrossRef]
- Feng, J.J.; Teh, C.P.; Ng, K.C.; Jen-Haw, J.C.; Xiao, D.; Abakr, Y.A.; Chan, A.; Chen, B. Heat transfer and fluid flow analysis in circular tubes with multi-delta-winglets vortex generators. Int. Commun. Heat Mass Transf. 2024, 159, 108267. [Google Scholar] [CrossRef]
- Wu, X.C.; Fu, T.; Wang, J.B.; Zeng, L.C.; Zhang, F. A comparative study of fluid flow and heat transfer in the tube with multi-V-winglets vortex generators. Appl. Therm. Eng. 2024, 236, 121448. [Google Scholar] [CrossRef]
- İĞCİ, A.A. Enhancing heat transfer with a hybrid vortex generator combining delta wing and winglet designs: A numerical study using the GEKO turbulence model. Appl. Therm. Eng. 2025, 258, 124604. [Google Scholar] [CrossRef]
- Wang, J.B.; Zeng, L.C.; He, Y.T. Thermal performance augmentation of microchannel using curved rectangular winglet vortex generators having rectangular perforation. Chem. Eng. Sci. 2025, 302, 120860. [Google Scholar] [CrossRef]
- Liu, H.L.; Li, H.; He, Y.L.; Chen, Z.T. Heat transfer and flow characteristics in a circular tube fitted with rectangular winglet vortex generators. Int. J. Heat Mass Transf. 2018, 126, 989–1006. [Google Scholar] [CrossRef]
- GB/T 14976-2012; Seamless Stainless Steel Pipes for Fluid Transport. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China: Beijing, China, 2012.
- Liu, L.; Jiang, X.Q.; Tang, H.Y.; Xu, H.; Zhang, X.Y. Experimental and numerical investigation on the flow and heat transfer characteristics of the variable cross-section internally finned tube. Int. J. Heat Mass Transf. 2025, 239, 126589. [Google Scholar] [CrossRef]
- Filonenko, G.K. Hydraulic resistance in pipes. Teploenergetika 1954, 1, 40–44. [Google Scholar]
- Gnielinski, V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368. [Google Scholar]
Arrangement | LP1 | LP2 | LP3 | LP4 | LP5 | LP6 | LP7 | LP8 | LP9 |
---|---|---|---|---|---|---|---|---|---|
A1 | 10 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 10 |
A2 | 31 | 34 | 34 | 34 | 34 | 34 | 34 | 34 | 31 |
A3 | 52 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 52 |
A4 | 73 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 73 |
Material | ρ (kg/m3) | cp (kJ/kg·K) | λ (W/(m·K)) | μ (Pa·s) |
---|---|---|---|---|
Air | 1.185 | 1.005 | 0.0263 | 18.35 × 10−6 |
S30408 | 7930 | 0.502 | 16.3 | / |
Nylon | 1120 | 1.926 | 0.173 | / |
Measured Parameters | Maximum Relative Uncertainty (%) | Calculated Parameters | Maximum Relative Uncertainty (%) |
---|---|---|---|
Air temperature | 0.500 | water temperature | 0.150 |
Wall temperature | 0.150 | Reynolds number | 1.003 |
Mass flow rate | 0.150 | Heat transfer area | 0.081 |
Air inlet velocity | 1 | Nusselt number | 0.534 |
Pressure drop | 0.075 | Friction factor | 1.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ni, Z.; Tang, H.; Xu, H.; Jiang, B. Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators. Energies 2025, 18, 1717. https://doi.org/10.3390/en18071717
Liu L, Ni Z, Tang H, Xu H, Jiang B. Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators. Energies. 2025; 18(7):1717. https://doi.org/10.3390/en18071717
Chicago/Turabian StyleLiu, Lin, Zhichun Ni, Haoyuan Tang, Hui Xu, and Bingyun Jiang. 2025. "Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators" Energies 18, no. 7: 1717. https://doi.org/10.3390/en18071717
APA StyleLiu, L., Ni, Z., Tang, H., Xu, H., & Jiang, B. (2025). Heat Transfer Performance and Flow Characteristics of a Heat Exchange Tube with Isosceles Trapezoidal Winglet Longitudinal Vortex Generators. Energies, 18(7), 1717. https://doi.org/10.3390/en18071717