Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Refining Process
- -
- The concentration of the process at the kiln inlet (k), the kiln outlet, or combined xi, yi, (moles/m3);
- -
- Product flow rate at the kiln inlet Qp, (m3/h);
- -
- Equilibrium outlet temperature Ts, (°C);
- -
- Fuel flow and calorific value Qc (m3/h), and qc (kcal/h);
- -
- Combustion air temperature Ta, (°C).
- -
- The concentration of combustion gasses in CO, CO2, and O2 (moles/m3);
- -
- Fuel gas outlet temperature Teg, (°C).
2.2. Dynamic Furnace Model
- x1—temperature at step 1;
- x2—fuel oil flow in step 1;
- x3—fuel oil flow in step 2;
- x4—temperature at step 2.
2.3. Existing Control Strategy
2.4. The Design of the Linear Controller for the F101 Furnace
- Full-information controller—if all components of the x states of the plant and all components of the W states of the exosystem are measurable.
- Error feedback controller—in which only the tracking error information is available.
2.5. The Validation of the Model Using Criteria on “The Theory of Close Models”
3. Results and Discussion
3.1. Linear Adjustment in the Furnace
3.2. Energy and Environmental Assessment of the Furnace
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lobelles Sardiñas, G.O.; Morejón Gil, R.; García Conde, L.E.; Font Prieur, D.Y. Technological improvement in the F-203 furnace of Refinería Cienfuegos S.A to increase its energy efficiency. Ing. Energetica 2021, 42, e2008. [Google Scholar]
- Mullinger, P.; Jenkins, B. Industrial and Process Furnaces: Principles, Design and Operation, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2014; pp. 1–639. [Google Scholar] [CrossRef]
- Worrell, E.; Galitsky, C. Energy Efficiency Improvement and Cost Saving Opportunities for Petroleum Refineries. An ENERGY STAR Guide for Energy and Plant Managers. 2005. Available online: https://www.osti.gov/servlets/purl/862119 (accessed on 17 January 2025).
- Materán, S.M. Energy efficiency in oil refineries: A look at the efforts and actions taken by the refining industry at the international and regional level. EnerLAC Rev. Energía Latinoam. Caribe 2018, 2, 72–105. Available online: https://enerlac.olade.org/index.php/ENERLAC/article/view/49 (accessed on 17 January 2025).
- Rivas-Perez, R.; Feliu-Batlle, V.; Castillo-Garcia, F.J.; Benitez-Gonzalez, I. Temperature control of a crude oil preheating furnace using a modified Smith predictor improved with a disturbance rejection term. IFAC Proc. Vol. 2014, 47, 5760–5765. [Google Scholar] [CrossRef]
- Feliu-Batlle, V.; Rivas-Perez, R. Control of the temperature in a petroleum refinery heating furnace based on a robust modified Smith predictor. ISA Trans. 2021, 112, 251–270. [Google Scholar] [CrossRef]
- Isidori, A.; Byrnes, C.I. Output regulation of nonlinear systems. IEEE Trans. Autom. Control 1990, 35, 131–140. [Google Scholar] [CrossRef]
- Francis, B.A. The linear multivariable regulator problem. In Proceedings of the 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, Clearwater, FL, USA, 1–3 December 1976; pp. 873–878. [Google Scholar] [CrossRef]
- Hu, Y.; Tan, C.; Broughton, J.; Roach, P.A.; Varga, L. Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model. Appl. Therm. Eng. 2018, 135, 41–53. [Google Scholar] [CrossRef]
- Aguilar Malavé, J.S. Control Predictivo Basado en Modelo Para un Sistema Tipo SISO de Nivel de Líquido Representado en Variables de Estados y su Comparación con el Control PID y Control por redes Neuronales Artificiales. La Libertad, Universidad Estatal Península de Santa Elena (UPSE), School of Systems and Telecommunications. 2023. Available online: https://repositorio.upse.edu.ec/handle/46000/9608 (accessed on 17 January 2025).
- Li, G.; Ji, W.; Wei, L.; Yi, Z. A novel fuel supplies scheme based on the retrieval solutions of the decoupled zone method for reheating furnace. Int. Commun. Heat Mass Transf. 2023, 141, 106572. [Google Scholar] [CrossRef]
- Espin, J.; Castrillon, F.; Leiva, H.; Camacho, O. A modified Smith predictor based–Sliding mode control approach for integrating processes with dead time. Alex. Eng. J. 2022, 61, 10119–10137. [Google Scholar] [CrossRef]
- Raja, G.L.; Ali, A. Enhanced tuning of Smith predictor-based series cascaded control structure for integrating processes. ISA Trans. 2021, 114, 191–205. [Google Scholar] [CrossRef]
- Mejía, C.; Camacho, O.; Chavez, D.; Herrera, M. A modified smith predictor for processes with variable delay. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Haratian, M.; Amidpour, M.; Hamidi, A. Modeling and optimization of process fired heaters. Appl. Therm. Eng. 2019, 157, 113722. [Google Scholar] [CrossRef]
- Gómez, A.; Correa, R. Implementation of a multivariable predictive control system in a fired heater. Dyna 2009, 76, 195–203. Available online: https://www.redalyc.org/articulo.oa?id=49611942019 (accessed on 17 January 2025).
- Jacas, P.F.; Peña, P.L.; Forgas, B.M.R. Experimental identification of a tubular preheating furnace for future control strategy analysis. In Proceedings of the III International Conference on Sustainable Energy Development, Villa Clara, Cuba, 13–17 November 2023. [Google Scholar]
- Zhang, R.; Cao, Z.; Li, P.; Gao, F. Design and implementation of an improved linear quadratic regulation control for oxygen content in a coke furnace. IET Control. Theory Appl. 2014, 8, 1303–1311. [Google Scholar] [CrossRef]
- Abreu, N.E.C. Adjustment of Controllers in the Fuel Control Loops in the Furnaces of the Cienfuegos S.A; Refinery; Automatic Control Department, Universidad Marta Abreu de Las Villas: Villa Clara, Cuba, 2021; Available online: https://dspace.uclv.edu.cu/handle/123456789/13217 (accessed on 17 January 2025).
- Liu, J.; Guo, N.; Peng, Y.; Li, W.; Qiao, J.; Gao, X.; Xiong, W. Adaptive sliding mode control of petrochemical flare combustion process based on radial basis function network. Chin. J. Chem. Eng. 2024, 76, 318–326. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, K.; Patwardhan, S.C. Development of Block Oriented Recursive and Constrained Parameter Estimation Schemes for ARMAX Models. IFAC-PapersOnLine 2022, 55, 7–12. [Google Scholar] [CrossRef]
- Schulz, E.; Janda, O.; Schultalbers, M. On LPV System Identification Algorithms for Input-Output Model Structures and their Relation to LTI System Identification. IFAC-PapersOnLine 2018, 51, 1098–1103. [Google Scholar] [CrossRef]
- Chunsheng, W.; Yan, Z.; Zejun, L.; Fuxiang, Y. Heat transfer simulation and thermal efficiency analysis of new vertical heating furnace. Case Stud. Therm. Eng. 2019, 13, 100414. [Google Scholar] [CrossRef]
- Isermann, R. Advanced methods of process computer control for industrial processes. Comput. Ind. 1981, 2, 59–72. [Google Scholar] [CrossRef]
- Güray, S. A Review of quadrotor UAV: Control and SLAM methodologies ranging from conventional to innovative approaches. Robot. Auton. Syst. 2023, 161, 104342. [Google Scholar] [CrossRef]
- Peña-Pupo, L.; Martinez-Garcia, H.; García-Vílchez, E.; Fariñas-Wong, E.Y.; Núñez-Álvarez, J.R. Combined Method of Flow-Reduced Dump Load for Frequency Control of an Autonomous Micro-Hydropower in AC Microgrids. Energies 2021, 14, 8059. [Google Scholar] [CrossRef]
- DeHaan, S.; Yang, C.H. Advanced Process Control System Design for a Refinery: A Case Study. IFAC Proc. Vol. 1986, 19, 81–89. [Google Scholar] [CrossRef]
- Hassan, K. Nonlinear Systems, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 1996; pp. 1–560. [Google Scholar]
- Shitong, W.; Zhaojing, W.; Zheng-Guang, W. The regulation controller design for linear random systems with an uncertain exosystem. Syst. Control Lett. 2022, 161, 105150. [Google Scholar] [CrossRef]
- Riaño Jaimes, C.; Diaz Rodríguez, J.; Mejía Bugallo, D. On-line method for optimal tuning of PID controllers using standard OPC interface. Inge CuC 2022, 18, 13–26. [Google Scholar] [CrossRef]
- Ricardo, A.R.; Benítez, I.F.; González, G.; Nuñez, J.R. Multi-agent system for steel manufacturing process. Int. J. Electr. Comput. Eng. 2022, 12, 2441. [Google Scholar] [CrossRef]
Variables | Designation |
---|---|
Ts1 | Crude oil outlet temperature at step 1 (°C) |
Ts2 | Crude oil outlet temperature at step 2 (°C) |
Qfq1 | Fuel oil flow to burners at step 1 (m3/h) |
Qfq2 | Fuel oil flow to burners at step 2 (m3/h) |
Tfq1, Tfq2 | Fuel oil temperatures at the burners (°C) |
Qc | Raw material inflow (m3/h) |
Tgc | Combustion gas temperature (°C) |
Fc | Fuel oil flow in the furnace (m3/h) |
1st Order Heating Furnace Models with Delays | |
---|---|
Models | Description |
, % FIT = 90.94 | Transfer function between step 1 outlet temperature and fuel flow to step 1 burners (m3/h/°C) |
, % FIT = 93.21 | Transfer function between step 2 outlet temperature and fuel flow to step 2 burners (m3/h/°C) |
, % FIT = 95.56 | Transfer function between the outlet temperature of step 2 and the fuel flow to the burners of step 1 (m3/h/°C) |
, % FIT = 94.42 | Transfer function between the outlet temperature of step 1 and the fuel flow to the burners of step 2 (m3/h/°C) |
Sample Database | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Fc, fuel oil flow (m3/h) | 0.804 | 0.736 | 0.800 | 0.756 | 0.681 | 0.745 | 0.740 | 0.753 | 0.745 | 0.733 |
Tgc, gas combustion temperature (°C) | 450.25 | 443.71 | 462.86 | 452.27 | 468.48 | 462.14 | 461.75 | 463.82 | 457.01 | 462.64 |
Efficiency (%) | 65.01 | 63.00 | 60.05 | 63.06 | 62.09 | 63.07 | 66.02 | 60.90 | 64.08 | 63.85 |
Emission CO2 (kg) | 58.67 | 57.14 | 63.63 | 59.81 | 54.88 | 58.09 | 57.28 | 60.13 | 58.45 | 57.77 |
Sample Database | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Fc, fuel oil flow (m3/h) | 0.732 | 0.736 | 0.800 | 0.756 | 0.681 | 0.745 | 0.740 | 0.753 | 0.745 | 0.733 |
Tgc, gas combustion temperature (°C) | 442.25 | 433.71 | 456.86 | 444.27 | 460.48 | 453.14 | 450.75 | 456.82 | 451.01 | 454.44 |
Efficiency (%) | 67.81 | 65.64 | 62.97 | 65.34 | 64.68 | 65.76 | 68.06 | 62.99 | 66.46 | 65.99 |
Emission CO2 (kg) | 53.42 | 53.71 | 58.38 | 55.17 | 49.69 | 54.36 | 54.00 | 54.95 | 54.36 | 53.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacas-Portuondo, F.; Peña-Pupo, L.; Forgas-Brioso, M.R.; Silva-Lora, E.E.; Taborda-Giraldo, J.A.; Nuñez-Alvarez, J.R. Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies. Energies 2025, 18, 1578. https://doi.org/10.3390/en18071578
Jacas-Portuondo F, Peña-Pupo L, Forgas-Brioso MR, Silva-Lora EE, Taborda-Giraldo JA, Nuñez-Alvarez JR. Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies. Energies. 2025; 18(7):1578. https://doi.org/10.3390/en18071578
Chicago/Turabian StyleJacas-Portuondo, Francisco, Leonardo Peña-Pupo, Miguel R. Forgas-Brioso, Electo E. Silva-Lora, John A. Taborda-Giraldo, and José R. Nuñez-Alvarez. 2025. "Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies" Energies 18, no. 7: 1578. https://doi.org/10.3390/en18071578
APA StyleJacas-Portuondo, F., Peña-Pupo, L., Forgas-Brioso, M. R., Silva-Lora, E. E., Taborda-Giraldo, J. A., & Nuñez-Alvarez, J. R. (2025). Efficiency Improvement in a Crude Oil Heating Furnace Based on Linear Regulation Control Strategies. Energies, 18(7), 1578. https://doi.org/10.3390/en18071578