A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. THE-METHER
2.2. Thermally Insulated Box and Heat Bed Control Unit
2.3. Experimental Setup
2.4. Methodological Approach
- (i)
- The direct, contact-based heat flow meter technique (HFM). The logged data was used as a reference.
- (ii)
- The contactless indirect enhanced thermometric method (E-THM) applied by means of the newly proposed customized measurement system. The tests were conducted with the infrared thermometer positioned at distances of 2.5 cm and 7 cm from the sample to evaluate the effect on the results.
3. Results and Discussion
3.1. Data Management and Web Interface
3.2. HFM vs. E-THM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
g | gravitational acceleration [m/s2] |
hc | convective coefficient [W/m2K] |
hr | radiative coefficient [W/m2K] |
htot | total heat transfer coefficient [W/m2K] |
k | coverage factor |
L | characteristic length [m] |
q | heat flux density [W/m2] |
Tair int | air temperature [K, °C] |
Tavg | average thermodynamic temperature [K] |
Ts | surface temperature [K, °C] |
wair | air velocity [m/s] |
E-THM | enhanced thermometric |
HFM | heat flow meter |
Gr | Grashof [-] |
Nu | Nusselt [-] |
Pr | Prandtl [-] |
Ra | Rayleigh [-] |
Re | Reynolds [-] |
Ri | Richardson [-] |
β | cubic thermal expansion coefficient [1/K] |
ε | emissivity [-] |
σ | Stefan–Boltzmann constant [W/m2K4] |
ν | kinematic viscosity [m/s2] |
References
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy Consumption and Greenhouse Gas Emissions by Buildings: A Multi-Scale Perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG Emissions of Buildings—The Hidden Challenge for Effective Climate Change Mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Zhang, Y.; He, C.-Q.; Tang, B.-J.; Wei, Y.-M. China’s Energy Consumption in the Building Sector: A Life Cycle Approach. Energy Build. 2015, 94, 240–251. [Google Scholar] [CrossRef]
- Soares, N.; Martins, C.; Gonçalves, M.; Santos, P.; da Silva, L.S.; Costa, J.J. Laboratory and In-Situ Non-Destructive Methods to Evaluate the Thermal Transmittance and Behavior of Walls, Windows, and Construction Elements with Innovative Materials: A Review. Energy Build. 2019, 182, 88–110. [Google Scholar] [CrossRef]
- Alkhatib, H.; Lemarchand, P. Assessing Thermal Performance: An Experimental Study on U-Value Variability in Building Fabric Elements. Results Eng. 2025, 25, 103730. [Google Scholar] [CrossRef]
- Afaynou, I.; Faraji, H.; Choukairy, K.; Khallaki, K.; Akrour, D. Effectiveness of a PCM-Based Heat Sink with Partially Filled Metal Foam for Thermal Management of Electronics. Int. J. Heat. Mass. Transf. 2024, 235, 126196. [Google Scholar] [CrossRef]
- Al-Sallami, W.; Al-Damook, A.; Thompson, H.M. A Numerical Investigation of Thermal Airflows over Strip Fin Heat Sinks. Int. Commun. Heat Mass Transf. 2016, 75, 183–191. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, T.V.; Sempey, A.; Dumoulin, J.; Batsale, J.-C. Short Time Non-Destructive Evaluation of Thermal Performances of Building Walls by Studying Transient Heat Transfer. Energy Build. 2019, 184, 141–151. [Google Scholar] [CrossRef]
- Kyritsi, E.; Katsaprakakis, D.; Dakanali, E.; Yiannnakoudakis, Y.; Zidianakis, G.; Michael, A.; Michopoulos, A. Energy Renovation of Two Historical Buildings in Mediterranean Area. J. Cult. Herit. 2025, 71, 106–113. [Google Scholar] [CrossRef]
- Defer, D.; Shen, J.; Lassue, S.; Duthoit, B. Non-Destructive Testing of a Building Wall by Studying Natural Thermal Signals. Energy Build. 2002, 34, 63–69. [Google Scholar] [CrossRef]
- Ruiz Valero, L.; Flores Sasso, V.; Prieto Vicioso, E. In Situ Assessment of Superficial Moisture Condition in Façades of Historic Building Using Non-Destructive Techniques. Case Stud. Constr. Mater. 2019, 10, e00228. [Google Scholar] [CrossRef]
- Akkurt, G.G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Costanzo, V.; Del Pero, C.; Evola, G.; Huerto-Cardenas, H.E.; et al. Dynamic Thermal and Hygrometric Simulation of Historical Buildings: Critical Factors and Possible Solutions. Renew. Sustain. Energy Rev. 2020, 118, 109509. [Google Scholar] [CrossRef]
- Genova, E.; Fatta, G. The Thermal Performances of Historic Masonry: In-Situ Measurements of Thermal Conductance on Calcarenite Stone Walls in Palermo. Energy Build. 2018, 168, 363–373. [Google Scholar] [CrossRef]
- de Rubeis, T.; Tanfoni, A.; Ciccozzi, A.; Pasqualoni, G.; Paoletti, D.; Ambrosini, D. Exploring Alternative Experimental Approaches for Wall Heat Transfer Assessment—The Enhanced Thermometric Method. In Proceedings of the IEEE 2024 9th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 25–28 June 2024; pp. 1–5. [Google Scholar]
- Law 30 March 1976, n. 373—Rules for the Containment of Energy Consumption for Thermal Uses in Buildings. (GU General Series n.148 of 06-07-1976). Available online: https://www.gazzettaufficiale.it/eli/id/1976/06/07/076U0373/sg (accessed on 1 March 2025).
- Vettore, M.; Donà, M.; Carpanese, P.; Follador, V.; da Porto, F.; Valluzzi, M.R. A Multilevel Procedure at Urban Scale to Assess the Vulnerability and the Exposure of Residential Masonry Buildings: The Case Study of Pordenone, Northeast Italy. Heritage 2020, 3, 1433–1468. [Google Scholar] [CrossRef]
- Lambie, E.; Saelens, D. Identification of the Building Envelope Performance of a Residential Building: A Case Study. Energies 2020, 13, 2469. [Google Scholar] [CrossRef]
- Deconinck, A.-H.; Roels, S. Comparison of Characterisation Methods Determining the Thermal Resistance of Building Components from Onsite Measurements. Energy Build. 2016, 130, 309–320. [Google Scholar] [CrossRef]
- Sassine, E. A Practical Method for In-Situ Thermal Characterization of Walls. Case Stud. Therm. Eng. 2016, 8, 84–93. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Pérez-Ordóñez, J.L.; Moyano, J.; Seara-Paz, S. Towards an In-Situ Evaluation Methodology of Thermal Resistance of Basement Walls in Buildings. Energy Build. 2020, 208, 109643. [Google Scholar] [CrossRef]
- Balaji, N.C.; Mani, M.; Venkatarama Reddy, B.V. Dynamic Thermal Performance of Conventional and Alternative Building Wall Envelopes. J. Build. Eng. 2019, 21, 373–395. [Google Scholar] [CrossRef]
- Teni, M.; Krstić, H.; Kosiński, P. Review and Comparison of Current Experimental Approaches for In-Situ Measurements of Building Walls Thermal Transmittance. Energy Build. 2019, 203, 109417. [Google Scholar] [CrossRef]
- Mobaraki, B.; Castilla Pascual, F.J.; García, A.M.; Mellado Mascaraque, M.Á.; Vázquez, B.F.; Alonso, C. Studying the Impacts of Test Condition and Nonoptimal Positioning of the Sensors on the Accuracy of the In-Situ U-Value Measurement. Heliyon 2023, 9, e17282. [Google Scholar] [CrossRef] [PubMed]
- Evola, G.; Lucchi, E. Thermal Performance of the Building Envelope: Original Methods and Advanced Solutions. Buildings 2024, 14, 2507. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Moyano, J.; Marín, D.; Fresco-Contreras, R. Review of in Situ Methods for Assessing the Thermal Transmittance of Walls. Renew. Sustain. Energy Rev. 2019, 102, 356–371. [Google Scholar] [CrossRef]
- Gaspar, K.; Casals, M.; Gangolells, M. Review of Criteria for Determining HFM Minimum Test Duration. Energy Build. 2018, 176, 360–370. [Google Scholar] [CrossRef]
- Yu, J.; Chang, W.S.; Zhang, R.; Dong, Y.; Huang, H.; Wang, T.H. In-Situ U-Value Measurements of Typical Building Envelopes in a Severe Cold Region of China: U-Value Variations and Energy Implications. Energy Build. 2024, 324, 114947. [Google Scholar] [CrossRef]
- Mandilaras, I.; Atsonios, I.; Zannis, G.; Founti, M. Thermal Performance of a Building Envelope Incorporating ETICS with Vacuum Insulation Panels and EPS. Energy Build. 2014, 85, 654–665. [Google Scholar] [CrossRef]
- Roque, E.; Vicente, R.; Almeida, R.M.S.F.; Mendes da Silva, J.; Vaz Ferreira, A. Thermal Characterisation of Traditional Wall Solution of Built Heritage Using the Simple Hot Box-Heat Flow Meter Method: In Situ Measurements and Numerical Simulation. Appl. Therm. Eng. 2020, 169, 114935. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Rodríguez-Álvaro, R.; Moyano, J.; Rico, F.; Marín, D. Determining the U-Value of Façades Using the Thermometric Method: Potentials and Limitations. Energies 2018, 11, 360. [Google Scholar] [CrossRef]
- Hoffmann, C.; Geissler, A. The Prebound-Effect in Detail: Real Indoor Temperatures in Basements and Measured versus Calculated U-Values. Energy Procedia 2017, 122, 32–37. [Google Scholar] [CrossRef]
- Tejedor, B.; Casals, M.; Gangolells, M. Assessing the Influence of Operating Conditions and Thermophysical Properties on the Accuracy of In-Situ Measured U -Values Using Quantitative Internal Infrared Thermography. Energy Build. 2018, 171, 64–75. [Google Scholar] [CrossRef]
- Živanović, N.; Aškrabić, M.; Savić, A.; Stević, M.; Stević, Z. Early-Age Cement Paste Temperature Development Monitoring Using Infrared Thermography and Thermo-Sensors. Buildings 2023, 13, 1323. [Google Scholar] [CrossRef]
- Grinzato, E.; Vavilov, V.; Kauppinen, T. Quantitative Infrared Thermography in Buildings. Energy Build. 1998, 29, 1–9. [Google Scholar] [CrossRef]
- Kirimtat, A.; Krejcar, O. A Review of Infrared Thermography for the Investigation of Building Envelopes: Advances and Prospects. Energy Build. 2018, 176, 390–406. [Google Scholar] [CrossRef]
- Lu, X.; Memari, A. Application of Infrared Thermography for In-Situ Determination of Building Envelope Thermal Properties. J. Build. Eng. 2019, 26, 100885. [Google Scholar] [CrossRef]
- Albatici, R.; Tonelli, A.M.; Chiogna, M. A Comprehensive Experimental Approach for the Validation of Quantitative Infrared Thermography in the Evaluation of Building Thermal Transmittance. Appl. Energy 2015, 141, 218–228. [Google Scholar] [CrossRef]
- Evangelisti, L.; De Cristo, E.; Guattari, C.; Gori, P.; De Rubeis, T.; Monteleone, S. Preliminary Development of a Non-Contact Method for Thermal Characterization of Building Walls: Laboratory Evaluation. Case Stud. Therm. Eng. 2025, 69, 106012. [Google Scholar] [CrossRef]
- Evangelisti, L.; Scorza, A.; De Lieto Vollaro, R.; Sciuto, S.A. Comparison between Heat Flow Meter (HFM) and Thermometric (THM) Method for Building Wall Thermal Characterization: Latest Advances and Critical Review. Sustainability 2022, 14, 693, Erratum in Sustainability 2022, 14, 13398. [Google Scholar] [CrossRef]
- Evangelisti, L.; Barbaro, L.; Guattari, C.; De Cristo, E.; De Lieto Vollaro, R.; Asdrubali, F. Comparison between Direct and Indirect Heat Flux Measurement Techniques: Preliminary Laboratory Tests. Energies 2024, 17, 2961. [Google Scholar] [CrossRef]
- Hukseflux Thermal Sensors HFP01 Heat Flux Sensor. Available online: https://www.hukseflux.com/products/heat-flux-sensors/heat-flux-sensors/hfp01-heat-flux-sensor (accessed on 26 November 2024).
- LSI Lastem Sensori per La Misura Della Temperatura Superficiale. Available online: https://www.lsi-lastem.com/products/air-temperature-2/ (accessed on 1 March 2025).
- LSI LASTEM Environmental Monitoring Solutions—Air Temperature. Available online: https://www.lsi-lastem.com/it/prodotti/temperatura-aria-indoor/ (accessed on 30 January 2025).
- Testo—Turbulence Level Probe. Available online: https://www.testo.com/en-DK/comfort-level-probe-for-measuring-degree-of-turbulence-with/p/0628-0009 (accessed on 1 March 2025).
- Bergman, L.; Lavine, S.; Incropera, P.; Dewitt, P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Fluid Properties Calculator. Available online: http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html (accessed on 8 November 2024).
- ISO/IEC Guide 98-3:2008; ISO/IEC Uncertainty of Measurement. Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). International Standardization Organization: Geneva, Switzerland, 2008.
- ISO/IEC Guide 98-1:2009; ISO/IEC Uncertainty of Measurement. Part 1: Introduction to the Expression of Uncertainty in Measurement. International Standardization Organization: Geneva, Switzerland, 2009.
Component | Manufacturer | Country | Unit Cost [€] | Number | Cost [€] |
---|---|---|---|---|---|
MLX90614-DCI | SEEED STUDIO | China | 40.00 | 1 | 40.00 |
ADS1115 | Texas Instruments | USA | 13.00 | 1 | 13.00 |
Wind Sensor Rev P | Modern Device | USA | 65.00 | 1 | 65.00 |
Set Up DC-DC 5V-9V-12V | MiOYOOW | China | 5.00 | 1 | 5.00 |
DS18B20 | Maxim Integrated (Analog Devices) | USA | 10.00 | 2 | 20.00 |
Perma-Proto HAT for Pi Mini Kit-No EEPROM | Adafruit | USA | 7.00 | 1 | 7.00 |
Raspberry Pi 5 8GB Starter Kit White | Raspberry Pi | UK | 149.00 | 1 | 149.00 |
DHT22 | Aosong Electronics | China | 20.00 | 1 | 20.00 |
5 Inch Touchscreen Monitor for Raspberry Pi | Freenove | China | 45.00 | 1 | 45.00 |
Equation | R2 |
---|---|
0.999 | |
0.999 | |
0.999 |
Sensor/System | Air Temperature [°C] | Surface Temperature [°C] | Convective Coeff. [W/m2K] | Radiative Coeff. [W/m2K] | Heat Flux [W/m2] |
---|---|---|---|---|---|
HFP01 (HFM) | - | - | - | - | 25.33 ± 0.04 |
LSI EST033 | 23.48 ± 0.02 | - | - | - | - |
LSI EST124 | - | 26.69 ± 0.02 | - | - | - |
LSI Sensors | - | - | 2.57 ± 0.02 (Equation (5)) 2.74 ± 0.02 (Equation (3)) | 5.14 ± 0.02 | 24.72 ± 0.22 (Equation (5)) 25.29 ± 0.22 (Equation (3)) |
DS18B20 | 23.44 ± 0.02 | - | - | - | - |
MLX90614 (IR) | - | 26.58 ± 0.02 | - | - | - |
THE-METHER (E-THM) | - | - | 2.55 ± 0.02 (Equation (5)) 2.73 ± 0.02 (Equation (3)) | 5.13 ± 0.02 | 24.10 ± 0.22 (Equation (5)) 24.66 ± 0.22 (Equation (3)) |
Sensor/System | Air Temperature [°C] | Surface Temperature [°C] | Convective Coeff. [W/m2K] | Radiative Coeff. [W/m2K] | Heat Flux [W/m2] |
---|---|---|---|---|---|
HFP01 (HFM) | - | - | - | - | 25.12 ± 0.02 |
LSI EST033 | 23.53 ± 0.02 | - | - | - | - |
LSI EST124 | - | 26.71 ± 0.02 | - | - | - |
LSI Sensors | - | - | 2.56 ± 0.02 (Equation (5)) 2.74 ± 0.02 (Equation (3)) | 5.14 ± 0.02 | 24.48 ± 0.22 (Equation (5)) 25.04 ± 0.22 (Equation (3)) |
DS18B20 | 23.48 ± 0.02 | - | - | - | - |
MLX90614 (IR) | - | 26.56 ± 0.02 | - | - | - |
THE-METHER (E-THM) | - | - | 2.54 ± 0.02 (Equation (5)) 2.72 ± 0.02 (Equation (3)) | 5.13 ± 0.02 | 23.65 ± 0.22 (Equation (5)) 24.20 ± 0.22 (Equation (3)) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evangelisti, L.; De Cristo, E.; Monteleone, S.; Guattari, C.; Gori, P.; Pini, I.; de Rubeis, T.; Ambrosini, D. A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method. Energies 2025, 18, 1537. https://doi.org/10.3390/en18061537
Evangelisti L, De Cristo E, Monteleone S, Guattari C, Gori P, Pini I, de Rubeis T, Ambrosini D. A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method. Energies. 2025; 18(6):1537. https://doi.org/10.3390/en18061537
Chicago/Turabian StyleEvangelisti, Luca, Edoardo De Cristo, Salvatore Monteleone, Claudia Guattari, Paola Gori, Ivan Pini, Tullio de Rubeis, and Dario Ambrosini. 2025. "A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method" Energies 18, no. 6: 1537. https://doi.org/10.3390/en18061537
APA StyleEvangelisti, L., De Cristo, E., Monteleone, S., Guattari, C., Gori, P., Pini, I., de Rubeis, T., & Ambrosini, D. (2025). A New Customized Measurement System for a Non-Contact, Enhanced Thermometric Method. Energies, 18(6), 1537. https://doi.org/10.3390/en18061537