Usefulness of Rapeseed Oil Modified by n-Hexane and Ethanol as Diesel Fuel
Abstract
1. Introduction
2. Methodology
2.1. Fuel Specifications
- Mixture of rapeseed oil with 10% n-hexane—RoHex10,
- Mixture of rapeseed oil with 15% n-hexane—RoHex15,
- Mixture of rapeseed oil with 10% n-hexane and 2% ethanol—RoHex10+Et2,
- Mixture of rapeseed oil with 15% n-hexane and 2% ethanol—RoHex15+Et2,
- Mixture of rapeseed oil with 10% n-hexane contacted with ethanol–RoHex10/Et,
- Mixture of rapeseed oil with 15% n-hexane contacted with ethanol–RoHex15/Et.
2.2. Experimental Setup
2.2.1. Engine Operating Tests
- Power—engine power [kW];
- Torque—engine torque [nm];
- MEP—indicated mean effective pressure [MPa];
- Pmax—maximum combustion pressure (Pcyl1) [MPa];
- R—pressure rise rate (Pcyl1_der) [MPa/0CA];
- ID—ignition delay [0CA];
- SOC—start of combustion [0CA];
- SOI—start of injection [0CA];
- 1I—heat discharge [kJ/m3];
- Q1—heat release rate [kJ/m3∙0CA].
- CO—carbon monoxide: a toxic gas formed as a result of incomplete fuel combustion;
- CO2—carbon dioxide: the main product of hydrocarbon fuel combustion, an indicator of combustion efficiency;
- NO—nitric oxide: one of the main components of NOx, formed at high combustion temperatures;
- NO2—nitrogen dioxide: a component of NOx and a highly toxic gas;
- NOx—sum of nitrogen oxides (NO + NO2): a key regulated emission parameter;
- O2—oxygen: a basic component of air; its concentration in exhaust gases is used to assess combustion efficiency and to analyze the air–fuel ratio (λ).
2.2.2. Surface Tension Measurements
2.2.3. Density Measurements
2.2.4. Viscosity Measurements
2.2.5. Contact Angle Measurements
3. Results and Discussion
3.1. Properties of Fuel Mixtures
3.2. Engine Test—Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cotterman, T.; Fuchs, E.R.H.; Whitefoot, K.S.; Combemale, C. The Transition to Electrified Vehicles: Evaluating the Labor Demand of Manufacturing Conventional versus Battery Electric Vehicle Powertrains. Energy Policy 2024, 188, 114064. [Google Scholar] [CrossRef]
- Paredes-Rojas, J.C.; Costa-Castelló, R.; Flores-Campos, J.A.; Torres-San Miguel, C.R. Experimental Study on Using Biodiesel in Hybrid Electric Vehicles. Energies 2025, 18, 7162. [Google Scholar] [CrossRef]
- Sens, M. Hybrid Powertrains with Dedicated Internal Combustion Engines Are the Perfect Basis for Future Global Mobility Demands. Transp. Eng. 2023, 13, 100146. [Google Scholar] [CrossRef]
- Wang, Y.; Biswas, A.; Rodriguez, R.; Keshavarz-Motamed, Z.; Emadi, A. Hybrid Electric Vehicle Specific Engines: State-of-the-Art Review. Energy Rep. 2022, 8, 832–851. [Google Scholar] [CrossRef]
- Dabi, M.; Saha, U.K. Application Potential of Vegetable Oils as Alternative to Diesel Fuels in Compression Ignition Engines: A Review. J. Energy Inst. 2019, 92, 1710–1726. [Google Scholar] [CrossRef]
- Nuortila, C.; Help, R.; SirviÃ, K.; Suopanki, H.; HeikkilÃ, S.; Niemi, S. Selected Fuel Properties of Alcohol and Rapeseed Oil Blends. Energies 2020, 13, 3821. [Google Scholar] [CrossRef]
- Pawlak, G.; Płochocki, P.; Simiński, P.; Skrzek, T. The Experimental Verification of the Multi-Fuel IC Engine Concept with the Use of Jet Propellant-8 (JP-8) and Its Blends with Pure Rapeseed Oil. Int. J. Energy Environ. Eng. 2021, 12, 627–639. [Google Scholar] [CrossRef]
- Pawlak, G.; Skrzek, T. Combustion of Raw Camelina Sativa Oil in CI Engine Equipped with Common Rail System. Sci. Rep. 2023, 13, 19731. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; Estevez, R.; Hidalgo-Carrillo, J.; Bautista, F.M.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A.; Luna, D. Outlook for Direct Use of Sunflower and Castor Oils as Biofuels in Compression Ignition Diesel Engines, Being Part of Diesel/Ethyl Acetate/Straight Vegetable Oil Triple Blends. Energies 2020, 13, 4836. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; Hidalgo-Carrillo, J.; Bautista, F.M.; Luna, C.; Calero, J.; Posadillo, A.; Romero, A.A.; Luna, D.; Estévez, R. Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends. Sustainability 2021, 13, 1749. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, X.; Han, W.; Geng, Z.; Tessa Margaret Thomas, M.; Dankwa Jeffrey, A.; Wang, G.; Ji, J.; Liu, H. Macro and Micro Solubility between Low-Carbon Alcohols and Rapeseed Oil Using Different Co-Solvents. Fuel 2020, 270, 117511. [Google Scholar] [CrossRef]
- Aguado-Deblas, L.; López-Tenllado, F.J.; Luna, D.; Bautista, F.M.; Romero, A.A.; Estevez, R. Advanced Biofuels from ABE (Acetone/Butanol/Ethanol) and Vegetable Oils (Castor or Sunflower Oil) for Using in Triple Blends with Diesel: Evaluation on a Diesel Engine. Materials 2022, 15, 6493. [Google Scholar] [CrossRef]
- Waddada, Y.; Ravia, R.; Belkasmia, M.; Faqira, M.; Essadiqia, E.; Liub, Q.; Yubrajb, P. Valorization of orange waste for high-performance biodiesel: A comprehensive technical review. Int. J. Green Energy 2025, 1–39. [Google Scholar] [CrossRef]
- Vadivelu, T.; Ramanujam, L.; Ravi, R.; Vijayalakshmi, S.K.; Ezhilchandran, M. An Exploratory Study of Direct Injection (DI) Diesel Engine Performance Using CNSL—Ethanol Biodiesel Blends with Hydrogen. Energies 2023, 16, 415. [Google Scholar] [CrossRef]
- Neupane, D. Biofuels from Renewable Sources, a Potential Option for Biodiesel Production. Bioengineering 2023, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Kharia, P.; Saini, R.; Kudapa, V.K. A study on various sources and technologies for production of biodiesel and its efficiency. MRS Energy Sustain. 2023, 10, 35–51. [Google Scholar] [CrossRef]
- Malik, K.; Capareda, S.C.; Kamboj, B.R.; Malik, S.; Singh, K.; Arya, S.; Bishnoi, D.K. Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources. Fuels 2024, 5, 157–175. [Google Scholar] [CrossRef]
- Pandey, S.; Narayanan, I.; Selvaraj, R.; Varadavenkatesan, T.; Vinayagam, R. Biodiesel production from microalgae: A comprehensive review on influential factors, transesterification processes, and challenges. Fuel 2024, 367, 131547. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jaryal, S.; Sharma, S.; Dhyani, A.; Tewari, B.S.; Mahato, N. Biofuels from Microalgae: A Review on Microalgae Cultivation, Biodiesel Production Techniques and Storage Stability. Processes 2025, 13, 488. [Google Scholar] [CrossRef]
- Malik, M.A.I.; Zeeshan, S.; Khubaib, M.; Ikram, A.; Hussain, F.; Yassin, H.; Qazi, A. A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Convers. Manag. 2024, 23, 100675. [Google Scholar] [CrossRef]
- Azadbakht, M.; Safieddin Ardebili, S.; Rahmani, M. A study on biodiesel production using agricultural wastes and animal fats. Biomass Conv. Bioref. 2023, 13, 4893–4899. [Google Scholar] [CrossRef]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Dickson, R.; Liu, J.J. A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization. Energy 2021, 221, 119883. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Iqbal, J.; Bathula, C.; AL-Muhtaseb, A.H. Challenges and Perspectives on Innovative Technologies for Biofuel Production and Sustainable Environmental Management. Fuel 2022, 325, 124845. [Google Scholar] [CrossRef]
- Chisti, Y. Biodiesel from Microalgae. Biotechnol. Adv. 2007, 25, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Nigam, P.S.; Singh, A. Production of Liquid Biofuels from Renewable Resources. Prog. Energy Combust. Sci. 2011, 37, 52–68. [Google Scholar] [CrossRef]
- Bastianoni, S.; Coppola, F.T.; Colacevicin, A.; Borghini, F.; Focardi, S. Biofuel Potential Production from the Orbetello Lagoon Macroalgae: A Comparision with Sunflower Feedstock. Biomass Bioenergy 2008, 32, 619–628. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Founti, A.M. Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oils of Greek origin: Sunflower, cottonseed, corn and olive. Fuel 2011, 90, 3439–3446. [Google Scholar] [CrossRef]
- Kumar, S.; Dinesha, P. Use of alternative fuels in compression ignition engines: A review. Biofuels 2017, 10, 525–535. [Google Scholar] [CrossRef]
- Alabi, O.O.; Ogunwoye, F.O.; Gbadeyan, O.J.; Fasina, A.O.; Deenadayalu, N. Exploring the impact of diesel-vegetable oil blends as an alternative fuel in combustion chambers. Biofuels 2024, 16, 142–149. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in Biodiesel Processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Borugadda, V.B.; Somidi, A.K.R.; Dalai, A.K. Chemical/Structural Modification of Canola Oil and Canola Biodiesel: Kinetic Studies and Biodegradability of the Alkoxides. Lubricants 2017, 5, 11. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. Appl. Sci. 2017, 7, 881. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Kim, M.S.; Choi, N.J. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine. Appl. Sci. 2017, 7, 34. [Google Scholar] [CrossRef]
- Rezki, B.; Essamlali, Y.; Aadil, M.; Semlal, N.; Zahouily, M. Biodiesel Production from Rapeseed Oil and Low Free Fatty Acid Waste Cooking Oil Using a Cesium Modified Natural Phosphate Catalyst. RSC Adv. 2020, 10, 41065–41077. [Google Scholar] [CrossRef]
- Roy, M.M.; Wang, W.; Bujold, J. Biodiesel Production and Comparison of Emissions of a DI Diesel Engine Fueled by Biodiesel-Diesel and Canola Oil-Diesel Blends at High Idling Operations. Appl. Energy 2013, 106, 198–208. [Google Scholar] [CrossRef]
- Qi, D.H.; Bae, C.; Feng, Y.M.; Jia, C.C.; Bian, Y.Z. Preparation, Characterization, Engine Combustion and Emission Characteristics of Rapeseed Oil Based Hybrid Fuels. Renew Energy 2013, 60, 98–106. [Google Scholar] [CrossRef]
- Tiwari, K.P.; Singh, R.N. A Technical Review on Performance and Emission Characteristics of Diesel Engine Fueled with Straight Vegetable Oil. Curr. World Environ. 2023, 18, 462–482. [Google Scholar] [CrossRef]
- No, S.Y. Inedible Vegetable Oils and Their Derivatives for Alternative Diesel Fuels in CI Engines: A Review. Renew. Sustain. Energy Rev. 2011, 15, 131–149. [Google Scholar] [CrossRef]
- Farag, M.S. Experimental Investigation of Diesel Engine Emissions Using Blends of Waste Vegetable Oils. J. Eng. Sci. 2023, 51, 37–52. [Google Scholar] [CrossRef]
- Serrano, L.; Carvalho, P.; Bastos, D.; Pires, N. Effects on Performance, Efficiency, Emissions, Cylinder Pressure, and Injection of a Common-Rail Diesel Engine When Using a Blend of 15% Biodiesel (B15) or 15% Hydrotreated Vegetable Oil (HVO15). SAE Tech. Pap 2023. [Google Scholar] [CrossRef]
- Estevez, R.; Aguado-Deblas, L.; López-Tenllado, F.J.; Bautista, F.M.; Romero, A.A.; Luna, D. Study on the Performance and Emissions of Triple Blends of Diesel/Waste Plastic Oil/Vegetable Oil in a Diesel Engine: Advancing Eco-Friendly Solutions. Energies 2024, 17, 1322. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Jańczuk, B.; Longwic, R.; Sander, P. Surface, Volumetric, and Wetting Properties of Oleic, Linoleic, and Linolenic Acids with Regards to Application of Canola Oil in Diesel Engines. Appl. Sci. 2019, 9, 3445. [Google Scholar] [CrossRef]
- Žaglinskis, J.; Rimkus, A. Research on the Performance Parameters of a Compression-Ignition Engine Fueled by Blends of Diesel Fuel, Rapeseed Methyl Ester and Hydrotreated Vegetable Oil. Sustainability 2023, 15, 4690. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Samaras, Z. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 2010, 89, 3442–3449. [Google Scholar] [CrossRef]
- Longwic, R.; Sander, P.; Jańczuk, B.; Zdziennicka, A.; Szymczyk, K. Modification of Canola Oil Physicochemical Properties by Hexane and Ethanol with Regards of Its Application in Diesel Engine. Energies 2021, 14, 4469. [Google Scholar] [CrossRef]
- Longwic, R.; Sander, P.; Zdziennicka, A.; Szymczyk, K.; Jańczuk, B. Changes of Some Physicochemical Properties of Canola Oil by Adding N-Hexane and Ethanol Regarding Its Application as Diesel Fuel. Appl. Sci. 2023, 13, 1108. [Google Scholar] [CrossRef]
- Sander, P.; Longwic, R.; Jańczuk, B.; Zdziennicka, A.; Szymczyk, K. The Use of Canola Oil, n-Hexane, and Ethanol Mixtures in a Diesel Engine. SAE Int. J. Fuels Lubr. 2021, 14, 123–138. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Liu, S.; Qu, L. Using a Chassis Dynamometer to Determine the Influencing Factors for the Emissions of Euro VI Vehicles. Transp. Res. D Transp. Environ. 2018, 65, 564–573. [Google Scholar] [CrossRef]
- Tatarynow, D.; Longwic, R.; Sander, P.; Zieliński, Ł.; Trojgo, M.; Lotko, W.; Lonkwic, P. Test Stand for a Motor Vehicle Powered by Different Fuels. Appl. Sci. 2022, 12, 683. [Google Scholar] [CrossRef]
- Korpach, O.A. Worldwide Harmonized Light Vehicles Test Procedures (WLTP). Natl. Transp. Univ. Bull. 2019, 1. [Google Scholar] [CrossRef]
- Szymczyk, K.; Zdziennicka, A.; Jańczuk, B.; Lubas, J.; Jaworski, A.; Kuszewski, H.; Woś, P.; Longwic, R.; Sander, P. N-Hexane Influence on Canola Oil Adhesion and Volumetric Properties. Int. J. Adhes. Adhes. 2025, 140, 103990. [Google Scholar] [CrossRef]
- van Oss, C.J. Interfacial Forces in Aqueous Media, 2nd ed.; Routledge: Oxfordshire, UK, 2006. [Google Scholar]
- Van Oss, C.J.; Costanzo, P.M. Adhesion of Anionic Surfactants to Polymer Surfaces and Low-Energy Materials. J. Adhes. Sci. Technol. 1992, 6, 477–487. [Google Scholar] [CrossRef]
- van Oss, C.J.; Good, R.J. Surface tension and the solubility of polymers and biopolymers: The role of polar and apolar interfacial free energies. J. Macromol. Sci. 1989, 26, 1183–1203. [Google Scholar] [CrossRef]
- van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Monopolar Surfaces. Adv. Colloid Interface Sci. 1987, 28, 35–64. [Google Scholar] [CrossRef]
- Fowkes, F.M. Attractive Forces At Interfaces. Ind. Eng. Chem. 1964, 56, 40–52. [Google Scholar] [CrossRef]
- Good, R.J.; Elbing, E.R.J. Generalization of Theory for Estimation of Interfacial Energies. Ind. Eng. Chem. 1970, 62, 54–78. [Google Scholar] [CrossRef]
- Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Comparison of surface tension, density, viscosity and contact angle of ethyl oleate to those of ethanol and oleci acid. J. Mol. Liq. 2024, 400, 124525. [Google Scholar] [CrossRef]
- Jańczuk, B.; Sierra, J.A.M.; González-Martín, M.L.; Bruque, J.M.; Wójcik, W. Properties of Decylammonium Chloride and Cesium Perfluorooctanoate at Interfaces and Standard Free Energy of Their Adsorption. J. Colloid Interface Sci. 1997, 192, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Szaniawska, M.; Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Adsorption Properties and Composition of Binary Kolliphor Mixtures at the Water–Air Interface at Different Temperatures. Molecules 2022, 27, 877. [Google Scholar] [CrossRef] [PubMed]
- Taraba, A.; Szymczyk, K.; Zdziennicka, A.; Jańczuk, B. Mutual Influence of Some Flavonoids and Classical Nonionic Surfactants on Their Adsorption and Volumetric Properties at Different Temperatures. Molecules 2022, 27, 2842. [Google Scholar] [CrossRef]
- Jańczuk, B.; Zdziennicka, A.; Wójcik, W. Relationship between wetting of teflon by cetyltrimethylammonium bromide solution and adsorption. Europ. Polym. Sci. 1997, 33, 1093–1098. [Google Scholar] [CrossRef]










| Parameter | Characteristics |
|---|---|
| Name | Fiat Qubo |
| Production year | 2015 |
| Engine capacity | 1248 cm3 |
| Cylinder number and arrangement | 4, in line |
| Compression ratio | 16.8:1 |
| Max power | 55 kW CEE/75 KM CEE |
| Max torque | 190 Nm CEE/kgm CEE |
| Idle speed | 850 ± 20 rpm |
| Engine speed at maximum torque | 1750 rpm |
| Fuel injection/fuel supply system | Common Rail/diesel fuel |
| Exhaust aftertreatment systems | EGR, DPF |
| Liquid | Properties | ||||||
|---|---|---|---|---|---|---|---|
| Viscosity [mPa s] | Density d [g/cm3] | Surface Tension [mN/m] | [Degree] | [mN/m] | [mN/m] | ||
| PTFE | Valve | ||||||
| Ro | 71.01 | 0.9100 | 34.20 | 58.0 | 16.7 | 32.47 | 1.73 |
| Hex | 0.30 | 0.6590 | 18.49 | 0.0 | 0.0 | 18.49 | 0.00 |
| Et | 1.20 | 0.7892 | 23.20 | 37.7 | 0.0 | 21.40 | 1.80 |
| Df | 4.66 | 0.8500 | 29.20 | 48.6 | 20.0 | 28.96 | 0.19 |
| RoHex10 | 26.82 | 0.8211 | 28.40 | 48.9 | 13.0 | 23.83 | 2.67 |
| RoHex15 | 19.56 | 0.8041 | 27.00 | 46.4 | 10.0 | 23.29 | 2.41 |
| RoHex10+Et2 | 26.06 | 0.8056 | 27.40 | 47.0 | 14.0 | 24.70 | 1.40 |
| RoHex15+Et2 | 16.38 | 0.7936 | 26.30 | 44.5 | 11.2 | 26.24 | 1.16 |
| RoHex10/Et | 19.30 | 0.8107 | 26.50 | 48.9 | 13.0 | 21.38 | 0.62 |
| RoHex15/Et | 11.62 | 0.8031 | 25.70 | 46.4 | 11.0 | 20.97 | 0.53 |
| Parameter | Df | Ro | RoHex10 | RoHex10/Et |
|---|---|---|---|---|
| Power | 56.3 kW 3849 rpm | 45.7 kW 3907 rpm | 47.7 kW 4035 rpm | 50.7 kW 3989 rpm |
| Torque | 186.9 Nm 2235rpm | 155.8Nm 2102 rpm | 161 Nm 2116 rpm | 160.8 Nm 2165 rpm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longwic, R.; Sander, P.; Zdziennicka, A.; Szymczyk, K.; Jańczuk, B.; Merkisz, J.; Górski, K. Usefulness of Rapeseed Oil Modified by n-Hexane and Ethanol as Diesel Fuel. Energies 2025, 18, 6455. https://doi.org/10.3390/en18246455
Longwic R, Sander P, Zdziennicka A, Szymczyk K, Jańczuk B, Merkisz J, Górski K. Usefulness of Rapeseed Oil Modified by n-Hexane and Ethanol as Diesel Fuel. Energies. 2025; 18(24):6455. https://doi.org/10.3390/en18246455
Chicago/Turabian StyleLongwic, Rafał, Przemysław Sander, Anna Zdziennicka, Katarzyna Szymczyk, Bronisław Jańczuk, Jerzy Merkisz, and Krzysztof Górski. 2025. "Usefulness of Rapeseed Oil Modified by n-Hexane and Ethanol as Diesel Fuel" Energies 18, no. 24: 6455. https://doi.org/10.3390/en18246455
APA StyleLongwic, R., Sander, P., Zdziennicka, A., Szymczyk, K., Jańczuk, B., Merkisz, J., & Górski, K. (2025). Usefulness of Rapeseed Oil Modified by n-Hexane and Ethanol as Diesel Fuel. Energies, 18(24), 6455. https://doi.org/10.3390/en18246455

