Short-Term Electrical Load Forecasting Based on XGBoost Model
Abstract
1. Introduction
- The nomenclature, volume, and availability of data for model development were evaluated, and a data preprocessing pipeline was developed;
- Four STLF XGBoost models with a simple tuning mechanism and high interpretability were developed;
- A method for preliminary hyperparameter tuning was proposed, which significantly increased the computational speed from ~30 s/it to ~2 s/it;
- New loss functions for model training and testing were developed, accounting for electricity market pricing specifics;
- The optimal training dataset size was determined for models that consider (6 years) and do not consider (10 years) the Balancing Market Index (BMI);
- A model with commercially viable error was developed: MAPE = 1.411%, MAE = 38.487 MWh.
2. The Current State of the Research Area
- The mean absolute error (MAE), as follows:
- The mean absolute percentage error (MAPE), as follows:
- The mean squared error (MSE), as follows:
- The root mean square error (RMSE), as follows:
- The coefficient of determination (R2), as follows:
- First, systematic determination of the optimal data collection duration for STLF model training, supported by theoretical analysis;
- Development of a novel Financial Loss function to quantify operational costs in the BEM for specified periods;
- Development of a blind validation mechanism that replicates real-world conditions for rigorous STLF model testing.
3. Materials and Methods
3.1. Data Collection
3.2. Visualization and Primary Data Analysis
3.3. Data Preprocessing
- Day type encoding using the label encoder method: weekday—0, pre-holiday—1, holiday—2, and weekend—3. The encoding order was determined based on the decision tree algorithm’s requirements. The results were converted into a new feature, TypeDay.
- Splitting the Date parameter into separate features: Year (2013–2025), Month (1–12), Day (1–31), and Hour (0–23);
- Adding a WeekDay feature with days of the week: Monday—0, Tuesday—1, Wednesday—2, Thursday—3, Friday—4, Saturday—5, Sunday—6.
- Incorporating time lags for energy consumption from the previous 1 to 7 days: lag-1…lag-7. Since the first 168 records (24 × 7) in the database did not contain a complete set of time-lagged data, they were removed during preprocessing.
- Removing features: PredCons and PredGen for models trained on ActCons and ActGen, and ActCons and ActGen for models trained on PredCons and PredGen data.
3.4. Model Selection and Hyperparameter Tuning
3.4.1. XGBoost Method
3.4.2. List of Proposed Models
3.4.3. Algorithms of the Proposed Models
- Model br3_pred
- Model br3_act
- Model br3_act_LC
- Model br2_act_LC
3.5. Validation
3.5.1. Loss Functions and Metrics
- The Cumulative Financial Loss function of the Balancing Market (CLFBM), as follows:
- The Mean Financial Loss function of the Balancing Market (MLFBM), as follows:
- The Median Financial Loss function of the Balancing Market (MedLFBM), as follows:
3.5.2. Validation Process Pipeline
3.6. Software and Hardware
4. Results
4.1. Exploratory Data Analisys
4.2. Optimal Hyperparameters of the Model
4.3. Model Validation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
lag-i | Electricity consumption for the i-th day(hour) ahead |
R2 | Coefficient of determination (R2Score) |
A | Attention-based |
ActConc | Actual electricity consumption |
ActGen | Actual generation volume |
AdaBoost | Adaptive Boosting |
ADMGM | Attention-based Dynamic Multi-Graph Module |
AE | AutoEncoder |
ANN | Artificial Neural Network |
AOA | Arithmetic Optimization Algorithm |
AR | AutoRegressive |
ARIMA | AutoRegressive Integrated Moving Average |
ARM | Author’s regression model |
ASAE | Adaptive Stacked AutoEncoder |
BEM | Balancing Energy Market |
BiGRU | Bidirectional Gated Recurrent Unit |
BiLSTM | Bidirectional long short-term memory method |
BiTCN | Bidirectional Time Convolutional Network |
BMI | Balancing Energy Market Index |
BP | BackPropagation neural networks |
CABiLSTM | 1D-CNN-Attention Bidirectional Long Short-Term Memory hybrid method |
CEEMDAN | Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
CLFBM | Cumulative Financial Loss function of Balancing Energy Market |
CNN | Convolutional Neural Network |
CS | Cuckoo Search |
CV | Cross-validation |
D | Day |
DAM | Day-Ahead Market |
DL | Deep learning |
DRN | Deep Residual Network |
DSSFA | Detrend Singular Spectrum Fluctuation Analysis algorithm |
EC | Error correction |
ENERGY | Energy absolute percent error |
ESC | Energy Supply Company |
FA | Factor Analysis |
FARIMA | Fourier AutoRegressive Integrated Moving Average |
FF | Feed-Forward neural networks |
FGC | Federal Grid Company |
FSC | Financial Settlement Center |
GADF | Gramian Angular Difference Field |
GASF | Gramian Angular Summation Field |
GB | Gradient boosting |
GRU | Gated Recurrent Unit |
H | Hour |
HP | Hyperparameter |
ICEENMDAN | Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
iMICN | improved Multi-scale Isometric Convolution Network |
IWOA | Improved Whale Optimization Algorithm |
KAN | Kolmogorov–Arnold Network |
KELM | Kernel Extreme Learning Machine |
KNN | K-Nearest Neighbors |
LASTGCN | Spatio-temporal convolutional network with learnable adjacency matrix |
LGB | Light Gradient Boosting |
LSTM | Long short-term memory |
LTLF | Long-term load forecasting |
M | Month |
MAE | Mean absolute error |
MARNE | Mean absolute range normalized error |
MAPE | Mean absolute percentage error |
MedLFBM | Median Financial Loss function of Balancing Energy Market |
MDI | Mean Decrease in Impurity |
ML | Machine learning |
MLFBM | Mean Financial Loss function of Balancing Energy Market |
MLP | MultiLayer Perceptron |
MLR | Multivariate Linear Regression |
MODBO | Multi-strategy Optimization Dung Beetle Algorithm |
MVMO | MODBO-VMD-MODBO hybrid |
MSE | Mean squared error |
MTLF | Mid-term load forecasting |
N-BEATSx | Neural Basis Expansion Analysis for Time Series with exogenous variables |
NHITS | Neural Hierarchical Interpolative Time Series |
PE | Permutation entropy |
PEAK | Peak load absolute percent error |
PredCons | Predicted electricity consumption |
PredGen | Predicted generation volume |
RF | Random Forest |
RMAE | Relative mean absolute error |
RMSE | Root mean square error |
RP | Recurrence Plot |
RRMSE | Relative root mean squared error |
S2P | Sequence-to-Point mapping method |
SAE | Normalized Signal Aggregate Error |
SARIMA | Seasonal AutoRegressive Integrated Moving Average |
SCIGE | Selecting Composition of Included Generating Equipment |
SE | Standard error |
SEN | Squeeze-and-Excitation Network |
SO | System Operator |
STLF | Short-term load forecasting |
SVM | Support vector machine |
TPE | Tree-structured Parzen Estimator |
TCN | Temporal Convolutional Network |
TFT | Temporal Fusion Transformer |
TKNFD | Textual-Knowledge-guided Numerical Feature Discovery |
TL | Transfer learning |
TSA | Trading System Administrator |
UES | Unified Energy System |
VALLEY | Valley load absolute percent error |
VMD | Variational Mode Decomposition |
WEM | Wholesale electricity market |
WM | Wang and Mendel’s Fuzzy Rule Learning Method |
XGB | XGBoost, eXtreme Gradient Boosting |
Y | Year |
Appendix A
Algorithm A1. Validation process pipeline |
Require: General set (df_general) Require: Validation set (df_validate) 1: df_result = () 2: for date in df_validate.date do 3: df_general_cut = df_general.date ≤ date – 2 day 4: df_result += get_df_predicted(df_general_cut, start = date – 1 day, end = date) 5: end for 6: df_result = df_validate.merge(df_result, on=date) 7: MAE(df_result), MAPE(df_result), CLFBM(df_result), MLFBM(df_result), MedFBM(df_result) |
Algorithm A2. Pipeline get_df_predicted() for br3_act |
Require: df_general_cut Require: date_start, date_ end 1: df_predicted = () 2: for date in range(date_end – date_start) do 3: empty dataframe df_predicted_daily with weather and calendar features is generated 4: if date == date_start then df_predicted_daily is filled with BEM data (ActCons, ActGen, PredCons, PredGen, Price) ActCons and ActGen columns are reset from 8:00 onward to simulate real-world conditions Missing ActCons and ActGen values after 8:00 are filled using PredCons and PredGen data PredCons and PredGen columns are removed from df_predicted_daily else if date == date_start + 1 then BEM data (ActCons, ActGen, Price) is deleted from the general population df_general_cut end if 5: last 168 rows (24 × 7) from df_general_cut are added to df_predicted_daily 6: preprocessing for df_predicted_daily is performed: lag-1…lag-7, TypeDay, etc. are added (Section 3.3) 7: optimal hyperparameters are determined for the current general population df_general_cut 8: prediction for df_predicted_daily is generated using the hyperparameters identified in step 7 9: df_predicted is updated with df_predicted_daily data 10: df_general_cut is updated with df_predicted_daily data 11: end for 12: The final prediction dataframe (columns Date and Predicted) is returned |
References
- Dagoumas, A. Impact of Bilateral Contracts on Wholesale Electricity Markets: In a Case Where a Market Participant Has Dominant Position. Appl. Sci. 2019, 9, 382. [Google Scholar] [CrossRef]
- Abbas, M.; Che, Y.; Khan, I.U. A Novel Stacked Ensemble Framework with the Kolmogorov-Arnold Network for Short-Term Electric Load Forecasting. Energy 2025, 332, 137216. [Google Scholar] [CrossRef]
- Wholesale Market. Available online: https://en.np-sr.ru/srnen/abouttheelectricityindustry/electricityandcapacitymarkets/wholesalemarket/index.htm (accessed on 10 June 2025).
- Sharifhosseini, S.M.; Niknam, T.; Taabodi, M.H.; Aghajari, H.A.; Sheybani, E.; Javidi, G.; Pourbehzadi, M. Investigating Intelligent Forecasting and Optimization in Electrical Power Systems: A Comprehensive Review of Techniques and Applications. Energies 2024, 17, 5385. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, S.; Chen, Y.; Liu, J.; Sun, Y.; Su, T.; Li, N.; Fang, J. A hybrid framework for short-term load forecasting based on optimized InMetra Boost and BiLSTM. Energy 2025, 328, 136582. [Google Scholar] [CrossRef]
- Karamolegkos, S.; Koulouriotis, D.E. Advancing short-term load forecasting with decomposed Fourier ARIMA: A case study on the Greek energy market. Energy 2025, 325, 135854. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Deng, S.; Zhong, C.; Wang, Y. Short-term load probabilistic forecasting based on non-equidistant monotone composite quantile regression and improved MICN. Energy 2025, 320, 135339. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, X.; Liu, Y.; Liu, J.; Tang, X. Enhancing Aggregate Load Forecasting Accuracy with Adversarial Graph Convolutional Imputation Network and Learnable Adjacency Matrix. Energies 2024, 17, 4583. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.; Ma, Y.; Hou, D.; Sun, W.; Li, S. A Short-Term Load Forecasting Method Considering Multiple Factors Based on VAR and CEEMDAN-CNN-BILSTM. Energies 2025, 18, 1855. [Google Scholar] [CrossRef]
- Xu, F.; Wang, H.; Lu, Z.; Qiao, J.; Zhang, Y.; Heng, H. Research on Non-Intrusive Load Disaggregation Technology Based on VMD-Nyströmformer-BiTCN. Electronics 2024, 13, 4663. [Google Scholar] [CrossRef]
- Ning, Z.; Jin, M.; Zeng, P. A Multimodal Interaction-Driven Feature Discovery Framework for Power Demand Forecasting. Energies 2025, 18, 2907. [Google Scholar] [CrossRef]
- Ullah, K.; Ahsan, M.; Hasanat, S.M.; Haris, M. Short-term load forecasting: A comprehensive review and simulation study with CNN-LSTM hybrids approach. IEEE Xplore 2024, 12, 111858–111881. [Google Scholar] [CrossRef]
- Gong, J.; Qu, Z.; Zhu, Z.; Xu, H.; Yang, Q. Ensemble Models of TCN-LSTM-LightGBM Based on Ensemble Learning Methods for Short-Term Electrical Load Forecasting. Energy 2025, 318, 134757. [Google Scholar] [CrossRef]
- Yang, D.; Guo, J.-E.; Li, Y.; Sun, S.; Wang, S. Short-term load forecasting with an improved dynamic decomposition-reconstruction-ensemble approach. Energy 2023, 263, 125609. [Google Scholar] [CrossRef]
- Osgonbaatar, T.; Matrenin, P.; Safaraliev, M.; Zicmane, I.; Rusina, A.; Kokin, S. A Rank Analysis and Ensemble Machine Learning Model for Load Forecasting in the Nodes of the Central Mongolian Power System. Inventions 2023, 8, 114. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Guo, K.; Liu, S.; He, D. Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models. Appl. Sci. 2024, 14, 5966. [Google Scholar] [CrossRef]
- Luo, H.; Tong, C.; Gu, W.; Li, Z. Time-Series Imaging for Improving the Accuracy of Short-Term Load Forecasting. Energy 2025, 333, 137282. [Google Scholar] [CrossRef]
- Zhang, L.; Jánošík, D. Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches. Expert Syst. Appl. 2024, 241, 122686. [Google Scholar] [CrossRef]
- Timur, O.; Üstünel, H.Y. Short-Term Electric Load Forecasting for an Industrial Plant Using Machine Learning-Based Algorithms. Energies 2025, 18, 1144. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, H.; Xie, Y.; Li, G.; Yang, D.; Hu, B. Regional short-term load forecasting method based on power load characteristics of different industries. Sustain. Energy Grids Netw. 2024, 38, 101336. [Google Scholar] [CrossRef]
- Brahim, S.B.; Amayri, M.; Bouguila, N. One-day-ahead electricity load forecasting of non-residential buildings using a modified Transformer-BiLSTM adversarial domain adaptation forecaster. Comput. Intell. 2025, 13, 176. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S. Electricity demand error corrections with attention bi-directional neural networks. Energy 2024, 291, 129938. [Google Scholar] [CrossRef]
- Chen, C.; Yang, X.; Dai, X.; Chen, L. Short-term load forecasting based on different characteristics of sub-sequences and multi-model fusion. Comput. Electr. Eng. 2024, 120, 109675. [Google Scholar] [CrossRef]
- Zhang, M.; Han, Y.; Zalhaf, A.S.; Wang, C.; Yang, P.; Wang, C.; Zhou, S.; Xiong, T. Accurate ultra-short-term load forecasting based on load characteristic decomposition and convolutional neural network with bidirectional long short-term memory model. Sustain. Energy Grids Netw. 2023, 35, 101129. [Google Scholar] [CrossRef]
- Pavlatos, C.; Makris, E.; Fotis, G.; Vita, V.; Mladenov, V. Enhancing Electrical Load Prediction Using a Bidirectional LSTM Neural Network. Electronics 2023, 12, 4652. [Google Scholar] [CrossRef]
- Pinto, T.; Praça, I.; Vale, Z.; Silva, J. Ensemble learning for electricity consumption forecasting in office buildings. Neurocomputing 2021, 423, 747–755. [Google Scholar] [CrossRef]
- Sheng, Z.; An, Z.; Wang, H.; Chen, G.; Tian, K. Residual LSTM based short-term load forecasting. Appl. Soft Comput. 2023, 144, 110461. [Google Scholar] [CrossRef]
- Han, X.; Shi, Y.; Tong, R.; Wang, S.; Zhang, Y. Research on short-term load forecasting of power system based on IWOA-KELM. Energy Rep. 2023, 9, 238–246. [Google Scholar] [CrossRef]
- Stamatellos, G.; Stamatelos, T. Short-Term Load Forecasting of the Greek Electricity System. Appl. Sci. 2023, 13, 2719. [Google Scholar] [CrossRef]
- Shahare, K.; Mitra, A.; Naware, D.; Keshri, R.; Suryawanshi, H.M. Performance analysis and comparison of various techniques for short-term load forecasting. Energy Rep. 2023, 9, 799–808. [Google Scholar] [CrossRef]
- Wan, A.; Chang, Q.; Khalil, A.B.; He, J. Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism. Energy 2023, 282, 128274. [Google Scholar] [CrossRef]
- Aguilar Madrid, E.; Antonio, N. Short-Term Electricity Load Forecasting with Machine Learning. Information 2021, 12, 50. [Google Scholar] [CrossRef]
- Hasanat, S.M.; Ullah, K.; Yousaf, H.; Munir, K.; Abid, S. Enhancing Short-Term Load Forecasting With a CNN-GRU Hybrid Model: A Comparative Analysis. IEEE Xplore 2024, 12, 184132–184141. [Google Scholar] [CrossRef]
- Sekhar, C.; Dahiya, R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand. Energy 2023, 268, 126660. [Google Scholar] [CrossRef]
- Ran, P.; Dong, K.; Liu, X.; Wang, J. Short-term load forecasting based on CEEMDAN and Transformer. Electr. Power Syst. Res. 2023, 214, 108885. [Google Scholar] [CrossRef]
- Wei, N.; Yin, C.; Yin, L.; Tan, J.; Liu, J.; Wang, S.; Qiao, W.; Zeng, F. Short-term load forecasting based on WM algorithm and transfer learning model. Appl. Energy 2024, 353, 122087. [Google Scholar] [CrossRef]
- Yamasaki, M.; Freire, R.Z.; Seman, L.O.; Stefenon, S.F.; Mariani, V.C.; dos Santos Coelho, L. Optimized hybrid ensemble learning approaches applied to very short-term load forecasting. Int. J. Electr. Power Energy Syst. 2024, 155, 109579. [Google Scholar] [CrossRef]
- Asiri, M.M.; Aldehim, G.; Alotaibi, F.; Alnfiai, M.M.; Assiri, M.; Mahmud, A. Short-term load forecasting in smart grids using hybrid deep learning. IEEE Access 2024, 12, 23504–23513. [Google Scholar] [CrossRef]
- Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short term load forecasting based on ARIMA and ANN approaches. Energy Rep. 2023, 9, 550–557. [Google Scholar] [CrossRef]
- Dong, J.; Jiang, Y.; Chen, P.; Li, J.; Wang, Z.; Han, S. Short-term power load forecasting using bidirectional gated recurrent units-based adaptive stacked autoencoder. Int. J. Electr. Power Energy Syst. 2025, 165, 110459. [Google Scholar] [CrossRef]
- Cavus, M.; Allahham, A. Spatio-Temporal Attention-Based Deep Learning for Smart Grid Demand Prediction. Electronics 2025, 14, 2514. [Google Scholar] [CrossRef]
- Ali, A.; Naeem, H.Y.; Sharafian, A.; Qiu, L.; Wu, Z.; Bai, X. Dynamic multi-graph spatio-temporal learning for citywide traffic flow prediction in transportation systems. Chaos Solitons Fractals 2025, 199, 116898. [Google Scholar] [CrossRef]
- XGBoost Tutorials. Introduction to Boosted Trees. Available online: https://xgboost.readthedocs.io/en/stable/tutorials/model.html (accessed on 10 June 2025).
Reference | Publ. | Best Model | Data Size | Train/Test/Validation Set | Count Features | Error Metrics |
---|---|---|---|---|---|---|
Abbas M. et al. [2] | 2025 | AdaBoost-LGB-MLP-KAN | 5 years | 4:1:0 | 21 | MAPE = 2.05%, RMSE = 353.52 MW, MAE = 289.96 MW |
Zhao Q. et al. [5] | 2025 | TPE-XGB-CS-BiLSTM | 3 years | 1:1:1 | 286 | MAE = 27.77 MW, RMSE = 40.45 MW MAPE = 2.98%, R2 = 94.06 |
Karamolegkos S., Koulouriotis D.E. [6] | 2025 | FARIMA | 10 years | 51:1:0 | 3 | MAPE = 7.96%, RMSE = 813.98, MSE = 662,556.46 |
Liu M. et al. [7] | 2025 | iMICN | 5 years | 8:1:1 | 7 | MAPE = 0.41%, MAE = 62.12 MW, RMSE = 202.23 MW |
Zhao J. et al. [8] | 2024 | LASTGCN | 16 months | 7:2:1 | 31 | MAE = 0.0246 MWh, RMSE = 0.0455, R2 = 0.7991 |
Wang B. et al. [9] | 2025 | CEEMDAN-CNN-BiLSTM | 25 days | 25:1:0 | 5 | RMSE = 154.2101 MW, R2 = 0.98333, MAE = 117.4744 MW, MAPE = 1.396% |
Xu F. et al. [10] | 2024 | VMD-Nyströmformer-BiTCN | 1 year | 50:3:0 | 1 | MAE = 8.35, SAE = 0.042 |
Ning Z. et al. [11] | 2025 | TKNFD-Transformer | 15 years | 12:3:0 | 38–92 | MAPE ≈ 1.4% |
Ullah K. et al. [12] | 2024 | CNN-LSTM | 53 months | 34:15:5 | 10 | RMSE = 951.94, MAE = 656.35, MAPE = 4.72% |
Gong J. et al. [13] | 2025 | TCN-LSTM-LGB | 5 years | 6:2:2 | 7 | MAPE = 0.519%, MAE = 46.1 MW, RMSE = 62.3 MW |
Yang D. et al. [14] | 2023 | ICEEMDAN-PE-BP | 4 months | 60:20:20 | 1 | MAE = 175.595, RMSE = 223.525, MAPE = 0.78 |
Osgonbaatar T. et al. [15] | 2023 | XGB | 3 years | 70:30:0 | 16 | MAE = 10.76 MW, MAPE = 1.25% |
Chen J. et al. [16] | 2024 | MVMO-LSTM | 1 year | 70:30:0 | 4 | RMSE = 0.1564, MAE = 0.1215, R2 = 0.9918 |
Luo H. et al. [17] | 2025 | 2D CNN-GASF-GADF-RP | 12 years | 80:20:0 | 4 | MAE = 234, RMSE = 339, MAPE = 1.55%, R2 = 0.983 |
Zhang L., Jánošík D. [18] | 2024 | XGB-AOA | 1 year | 7884:876:0 | 5 | RMSE = 4227, MAPE = 0.05973 R2 = 0.92252 |
Timur O., Üstünel H.Y. [19] | 2025 | GB | 3 years | 80:20:0 | 15 | R2 = 98.591, MAPE = 0.827% |
Zhou B. et al. [20] | 2024 | FA-BiGRU-A | 2 years | 20:2:2 | 8 | MAE = 0.581 MW, RMSE = 0.871 MW MAPE = 2.037% |
Brahim S.B. et al. [21] | 2025 | Transformer-BiLSTM-DA | 2 years | 60:20:20 | 9 | R2 = 0.038, RMSE = 0.0022, MAPE = 0.0176 |
Ghimire S. et al. [22] | 2024 | VMD-CABiLSTM-ANN-EC | 10 years | 50:50:0 | 1 | RMSE = 0.187 MW, MAE = 0.137 MW RMAE = 1.145%, RRMSE = 3.624% |
Chen C. et al. [23] | 2024 | ARM | 1 months | 2880:96:0 | 13 | RMSE = 256.17 MW, MAPE = 1.982%, R2 = 0.989 |
Zhang M. et al. [24] | 2023 | ICEEMDAN-CNN-BiLSTM | 1 month | 70:20:10 | 11 | MAPE = 1.85, RMSE = 0.407 kW |
Pavlatos C. et al. [25] | 2023 | BiLSTM | 746 days | 25:6:1 | 1 | RMSE = 0.022, MAE = 0.122 |
Pinto T. et al. [26] | 2021 | AdaBoost | 10 days | 10:1:0 | 15 | MAPE = 5.34% |
Sheng Z. et al. [27] | 2023 | DRN-LSTM-SEN | 4324 days | 32:12:0 | 1 | MAPE = 1.56% |
Han X. et al. [28] | 2023 | IWOA-KELM | 7 days | 6:1:0 | 2 | MAPE = 1.25%, RMSE = 13.62 |
Stamatellos G. et al. [29] | 2023 | FF ANN | 6 years | 5:1:0 | 7 | MAPE = 3.66%, RMSE = 0.049 |
Shahare K. et al. [30] | 2023 | CNN-LSTM | 2 years | 70:30:0 | 6 | MAE = 0.043, RMSE = 0.064, R2 = 95.05% |
Wan A. et al. [31] | 2023 | CNN-LSTM-A | 1 year | 4:1:0 | 9 | MAPE = 2.85%, RMSE = 0.6175 |
Aguilar Madrid E., Antonio N. [32] | 2021 | XGB | 65 months | 51:14:0 | 13 | MAPE = 3.74%, RMSE = 55.6, PEAK = 2.93, VALLEY = 3.04, ENERGY = 1.75 |
Hasanat S.M. et al. [33] | 2024 | 1-D CNN-GRU | – | – | 10 | MAE = 686.32, MAPE = 3.24%, RMSE = 486.17 |
Sekhar C., Dahiya R. [34] | 2023 | 1-D GWO-CNN-BiLSTM | 50 months | 90:10:0 | 4 | MAE = 0.212, MSE = 0.119, MAPE = 0.0699, RMSE = 0.265 |
Ran P. et al. [35] | 2023 | CEEMDAN-SE-Transformer | 1 year | 80:20:0 | 3 | MAPE = 4.8%, RMSE = 1.26, MAE = 0.95, R2 = 0.8 |
Wei N. et al. [36] | 2024 | WM-DSSFA-LSTM-TL | 6 years | 4:1:1 | 6 | MAE = 0.4, RMSE = 0.51, R2 = 0.41, MAPE = 15.66%, MARNE = 9.28% |
Yamasaki M. et al. [37] | 2024 | XGB-EWT | 5 years | 130:15:0 | 175 | RMSE = 1 931.8 MW, MAE = 1 564.9 MW, MAPE = 2.54% |
Asiri M.M. et al. [38] | 2024 | CNN-BiLSTM-AE | 31 days | 30:1:0 | 1 | MAPE = 0.059% |
Tarmanini C. et al. [39] | 2023 | ANN | 18 months | 90:10:0 | 1 | MSE = 174.4, MAPE = 1.8% |
Dong J. et al. [40] | 2025 | BiGRU-ASAE | 1 year | – | 13 | MAPE = 1.37% |
Cavus M., Allahham A. [41] | 2025 | CNN-LSTM-A | 1 year | – | 3 | MAE = 0.0485, RMSE = 0.0795, MAPE = 0.1156, R2 = 0.4867 |
Ali A. et al. [42] | 2025 | ADMGM | 8 months | 4656:240:0 | 128 | MAPE = 15.21%, RMSE = 2.14 |
This study | 2025 | XGB | 149 months | 132:12:5 | 18 | MAE = 38.487 MWh, MAPE = 1.411% |
Features | Source | Temporal Resolution, h | Availability |
---|---|---|---|
Volume | The dataset itself | 1 | X 1 − 1 |
Y, M, D, H, WD | Datetime library | – | Anytime |
TypeDay | https://mtsz.tatarstan.ru/eng/ (accessed on 10 June 2025) | 8760 | By the end of the current year |
Meteorology (Temperature) | https://kazan.nuipogoda.ru/ (accessed on 10 June 2025) | 3 | X + 3 |
Actual data SO (ActConc, ActGen) | https://br.so-ups.ru/ (accessed on 10 June 2025) | 1 | t 2 − 1 |
Predicted data SO (PredConc, PredGen, Price) | https://br.so-ups.ru/ (accessed on 10 June 2025) | 1 | By the end of the current X day |
lag-1…lag-7 | The dataset itself | 1 | X − 2 |
Model | BEM Features | Period | XGBRegressor HP Tuning |
---|---|---|---|
br3_pred | PredGen, PredCons, Price | 2018–2025 | Adaptive re-training |
br3_act | ActGen, ActCons, Price | 2018–2025 | Adaptive re-training |
br3_act_LC | ActGen, ActCons, Price | 2018–2025 | Pre-tuned |
br2_act_LC | ActGen, ActCons | 2013–2025 | Pre-tuned |
br3_act_LC | br2_act_LC | ||||
---|---|---|---|---|---|
Period, Year | Max_Depth | MAPE, % | Period, Year | Max_Depth | MAPE, % |
6 1 | 3 | 1.507 | 10 | 3 | 1.507 |
4 | 1.468 | 4 | 1.497 | ||
5 | 1.457 | 5 | 1.447 | ||
6 | 1.454 | 6 | 1.476 |
Month of 2025/ Model | MAPE, % | ||||||
---|---|---|---|---|---|---|---|
XGBoost | CatBoost | ARIMA | |||||
br3_pred | br3_act | br3_act_LC | br2_act_LC | br3_pred | br2_act_LC | ||
January | 1.605 | 1.576 1 | 1.640 | 1.636 | 1.616 | 1.827 | 11.248 |
February | 1.233 | 1.246 | 1.196 | 1.242 | 1.154 | 1.194 | 11.446 |
March | 1.169 | 1.181 | 1.104 | 1.122 | 1.190 | 1.221 | 10.091 |
April | 1.689 | 1.619 | 1.570 | 1.490 | 1.710 | 1.596 | 11.567 |
May | 1.610 | 1.609 | 1.618 | 1.548 | 1.744 | 1.770 | 11.023 |
Total | |||||||
MAPE, % | 1.464 | 1.449 | 1.429 | 1.411 | 1.488 | 1.527 | 11.062 |
MAE, MWh | 39.912 | 39.346 | 38.992 | 38.487 | 40.341 | 41.396 | 277.585 |
CLFBM, RUR | 15,961,596 | 17,237,366 | 16,409,259 | 16,726,062 | 16,557,290 | 17,005,792 | 138,535,705 |
MLFBM, RUR/h | 4404.41 | 4756.45 | 4527.94 | 4615.36 | 4568.79 | 4692.55 | 38,227.29 |
MedLFBM, RUR/h | 262.78 | 223.77 | 282.37 | 319.47 | 259.47 | 315.83 | 7271.8 |
τ, s/it | 28.99 | 31.07 | 1.97 | 2.01 | 45.8 | 1.28 | 4.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beloev, H.I.; Saitov, S.R.; Filimonova, A.A.; Chichirova, N.D.; Babikov, O.E.; Iliev, I.K. Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies 2025, 18, 5144. https://doi.org/10.3390/en18195144
Beloev HI, Saitov SR, Filimonova AA, Chichirova ND, Babikov OE, Iliev IK. Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies. 2025; 18(19):5144. https://doi.org/10.3390/en18195144
Chicago/Turabian StyleBeloev, Hristo Ivanov, Stanislav Radikovich Saitov, Antonina Andreevna Filimonova, Natalia Dmitrievna Chichirova, Oleg Evgenievich Babikov, and Iliya Krastev Iliev. 2025. "Short-Term Electrical Load Forecasting Based on XGBoost Model" Energies 18, no. 19: 5144. https://doi.org/10.3390/en18195144
APA StyleBeloev, H. I., Saitov, S. R., Filimonova, A. A., Chichirova, N. D., Babikov, O. E., & Iliev, I. K. (2025). Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies, 18(19), 5144. https://doi.org/10.3390/en18195144