Enhanced Swarm-Intelligence Optimization of Inverter Placement for Cable Cost Minimization in Standardized Photovoltaic Power Units
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.3. Novelty and Contributions
- High-precision cost modeling: A mathematical model is developed that explicitly quantifies cable installation costs as a function of inverter placement.
- Algorithmic enhancement: An improved adaptive particle swarm optimization (ACM-PSO) algorithm is introduced, significantly enhancing both the accuracy and efficiency of problem solving.
- Generalizable solution framework: A systematic optimization framework for inverter placement in PV systems is established and shown to exhibit strong generalization capability, making it applicable to large-scale PV plant design.
- Practical validation: The proposed method is validated in a large-scale PV project in Xinjiang, where it achieved a 2.3–3.8% reduction in cable installation costs compared with conventional layout approaches.
1.4. Paper Organization
2. Methodology
2.1. Modified Particle Swarm Optimizer
2.1.1. Leader
2.1.2. Elite
2.1.3. Explorer
2.2. Modeling Method for Standardized PV Power Units
2.2.1. Design of Main Cable Trenches and Extraction of String Information
2.2.2. Auxiliary Cable Trenches and String Numbering Design
2.2.3. Economic Metrics Model
2.3. Optimization Procedure
3. Case Validation
3.1. Main and Auxiliary Cable Trench Design
3.2. Inverter Combiner-Unit Partitioning Scheme
3.3. Economic Metrics Model Parameters
4. Results and Discussions
4.1. Cable Cost Comparison Across Different Schemes
4.2. Spatial Layout Analysis of the Optimal Scheme
5. Conclusions
5.1. Main Conclusions
5.2. Limitations and Future Works
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Gan, X.; Pei, J.; Wang, W.; Chen, J.; Yuan, S. Applications of Artificial Intelligence and Computational Intelligence in Hydraulic Optimization of Centrifugal Pumps: A Comprehensive Review. Eng. Appl. Comput. Fluid Mech. 2025, 19, 2474675. [Google Scholar] [CrossRef]
- Gan, X.; Pei, J.; Pavesi, G.; Yuan, S.; Wang, W. Application of Intelligent Methods in Energy Efficiency Enhancement of Pump System: A Review. Energy Rep. 2022, 8, 11592–11606. [Google Scholar] [CrossRef]
- Ding, M.; Xu, Z.; Wang, W.; Wang, X.; Song, Y.; Chen, D. A Review on Chinaߣs Large-Scale PV Integration: Progress, Challenges and Recommendations. Renew. Sustain. Energy Rev. 2016, 53, 639–652. [Google Scholar] [CrossRef]
- Cheng, R.; Zhou, Q.; Wang, S. Comparison of Cable Costs in PV Power Stations. Sol. Energy 2023, 1, 18–26. [Google Scholar]
- Gao, Z.; Li, S.; Zhou, X.; Ma, Y. An Overview of PV System. In Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016; IEEE: New York, NY, USA, 2016; pp. 587–592. [Google Scholar]
- Zhong, Q.; Tong, D. Spatial Layout Optimization for Solar Photovoltaic (PV) Panel Installation. Renew. Energy 2020, 150, 1–11. [Google Scholar] [CrossRef]
- Xu, S. Research on Modeling and Design Optimization Techniques for Large Photovoltaic Power Station. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2024. [Google Scholar]
- Wang, R. Design Optimization of PV Power Station with Complex Terrain—A Case Study of Mountain PV Project in Shanxi. Eng. J. Wuhan Univ. 2023, 56, 279–283. [Google Scholar]
- Wang, Y.; Liu, B.; Xing, Y.; Peng, H.; Wu, H.; Zhong, J. Ecological Construction Status of Photovoltaic Power Plants in China’s Deserts. Front. Environ. Sci. 2024, 12, 1406546. [Google Scholar] [CrossRef]
- Ding, H.; He, X.; Jing, H.; Wu, X.; Weng, X. Design Method of Primary Structures of a Cost-Effective Cable-Supported Photovoltaic System. Appl. Sci. 2023, 13, 2968. [Google Scholar] [CrossRef]
- Nascimento, E.O.; Monteiro, P.R.D.; Borges, T.T. Optimization of Cables in a Solar Power Plant Using Genetic Algorithms. Int. J. Adv. Eng. Technol. 2023, 16, 608–625. [Google Scholar]
- Khatib, T.; Mohamed, A.; Sopian, K. A Review of Photovoltaic Systems Size Optimization Techniques. Renew. Sustain. Energy Rev. 2013, 22, 454–465. [Google Scholar] [CrossRef]
- Li, Y.; Liu, R.; Liang, C. Comprehensive Benefit Optimization Method for Photovoltaic Inverters Participating in Distribution Network Loss Reduction by Reactive Compensation. Front. Energy Res. 2024, 12, 1502053. [Google Scholar] [CrossRef]
- Vlahinić, S.; Franković, D.; Komen, V.; Antonić, A. Reactive Power Compensation with PV Inverters for System Loss Reduction. Energies 2019, 12, 4062. [Google Scholar] [CrossRef]
- Scarabelot, L.T.; Rambo, C.R.; Rampinelli, G.A. A Relative Power-Based Adaptive Hybrid Model for DC/AC Average Inverter Efficiency of Photovoltaics Systems. Renew. Sustain. Energy Rev. 2018, 92, 470–477. [Google Scholar] [CrossRef]
- Freitas, S.; Serra, F.; Brito, M.C. Pv Layout Optimization: String Tiling Using a Multi-Objective Genetic Algorithm. Sol. Energy 2015, 118, 562–574. [Google Scholar] [CrossRef]
- Mignoni, N.; Carli, R.; Dotoli, M. Layout Optimization for Photovoltaic Panels in Solar Power Plants via a MINLP Approach. IEEE Trans. Autom. Sci. Eng. 2025, 22, 18148–18161. [Google Scholar] [CrossRef]
- Tan, J.; Wang, X.; Zhang, S. Refinement Design of Photovoltaic Power Generation System Based on String Inverter. Rural Electrif. 2023, 1, 55–59+66. [Google Scholar]
- Xia, X.; Peng, Y.; Zhang, N.; Li, J.; Zhu, L. Research on Cable Selection for PV Power Stations in Desert Areas. Sol. Energy 2023, 11, 12–17. [Google Scholar]
- Yao, Y.; Wang, Y.; Jia, H.; Mu, Y. A Novel Differential Evolution Method with a Hierarchical Decoder for the Photovoltaic Layout Optimization Problem. Int. J. Electr. Power Energy Syst. 2025, 164, 110397. [Google Scholar] [CrossRef]
- Ekici, S.; Kopru, M.A. Investigation of PV System Cable Losses. Int. J. Renew. Energy Res. 2017, 7, 807–815. [Google Scholar] [CrossRef]
- Narasimhan, A. Qualitative Assessment of PV System Cable Loss and Practical Cost Optimization. In Proceedings of the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), Bangalore, India, 2–4 July 2020; pp. 1–6. [Google Scholar]
- Khan, F.U.; Murtaza, A.F.; Sher, H.A.; Al-Haddad, K.; Mustafa, F. Cabling Constraints in PV Array Architecture: Design, Mathematical Model and Cost Analysis. IEEE Access 2020, 8, 182742–182754. [Google Scholar] [CrossRef]
- Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two Decades. Arch. Comput. Methods Eng. 2023, 30, 1663–1725. [Google Scholar] [CrossRef]
- Gan, X.; Xu, Y.; Pei, J.; Wang, W.; Yuan, S. Approaching a Modified Adaptive Swarm Intelligence to Energy Efficiency Enhancement of an Inline Pump. Energy 2025, 325, 136207. [Google Scholar] [CrossRef]
- Freitas, D.; Lopes, L.G.; Morgado-Dias, F. Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy 2020, 22, 362. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Tan, D.; Liu, L. Particle Swarm Optimization Algorithm: An Overview. Soft Comput 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Computat. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Liang, J.J.; Qu, B.Y.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization; Technical Report 201311; Zhengzhou University: Zhengzhou, China; Nanyang Technological University: Singapore, 2013. [Google Scholar]
- Chen, K.; Zhou, F.; Liu, A. Chaotic Dynamic Weight Particle Swarm Optimization for Numerical Function Optimization. Knowl.-Based Syst. 2018, 139, 23–40. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), La Jolla, CA, USA, 16–19 July 2000; IEEE: New York, NY, USA, 2000; Volume 1, pp. 84–88. [Google Scholar]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man Cybern. B 2009, 39, 1362–1381. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J. Multi-Leader PSO (MLPSO): A New PSO Variant for Solving Global Optimization Problems. Appl. Soft Comput. 2017, 61, 256–263. [Google Scholar] [CrossRef]
Scheme No. | DC Cable Length/m | LV-AC Cable Length/m | Total Cable Cost/CNY |
---|---|---|---|
1 | 17,705 | 1670 | 292,945 |
2 | 20,942 | 1393 | 299,918 |
3 | 19,353 | 1577 | 300,337 |
4 | 19,817 | 1575 | 304,353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wei, J.; Tang, R.; Hu, Q.; Wang, Y.; Chang, L.; Gan, X.; Pei, J. Enhanced Swarm-Intelligence Optimization of Inverter Placement for Cable Cost Minimization in Standardized Photovoltaic Power Units. Energies 2025, 18, 5111. https://doi.org/10.3390/en18195111
Zhang M, Wei J, Tang R, Hu Q, Wang Y, Chang L, Gan X, Pei J. Enhanced Swarm-Intelligence Optimization of Inverter Placement for Cable Cost Minimization in Standardized Photovoltaic Power Units. Energies. 2025; 18(19):5111. https://doi.org/10.3390/en18195111
Chicago/Turabian StyleZhang, Meng, Jixuan Wei, Rong Tang, Qin Hu, Yang Wang, Li Chang, Xingcheng Gan, and Ji Pei. 2025. "Enhanced Swarm-Intelligence Optimization of Inverter Placement for Cable Cost Minimization in Standardized Photovoltaic Power Units" Energies 18, no. 19: 5111. https://doi.org/10.3390/en18195111
APA StyleZhang, M., Wei, J., Tang, R., Hu, Q., Wang, Y., Chang, L., Gan, X., & Pei, J. (2025). Enhanced Swarm-Intelligence Optimization of Inverter Placement for Cable Cost Minimization in Standardized Photovoltaic Power Units. Energies, 18(19), 5111. https://doi.org/10.3390/en18195111