Analysis of Photovoltaic Cable Degradation and Fire Precursor Signals for Optimizing Integrated Power Grids
Abstract
1. Introduction
1.1. Research Background and Rationale
1.2. Research Trends
1.3. Research Purpose and Scope
2. Experimental Design
2.1. Setup
2.2. Circuit Diagram
2.3. Method and Progress
3. Experimental Results and Analysis
3.1. Temperature Variation Data of PV Module
3.2. Temperature Variation Data of PV TFR-CV Cable
3.3. Voltage and Current Characteristics of PV Module Cables
4. Review
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, L.; Liu, X.; Liu, Y.; Zhuo, F. Modeling and stability issues of voltage-source converter-dominated power systems: A review. CSEE J. Power Energy Syst. 2022, 8, 1530–1549. [Google Scholar] [CrossRef]
- Notton, G. Management of Intermittence of Renewable Energy Production: Various Aspects of Energy Storage. In Proceedings of the 2025 19th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 19–21 June 2025; pp. 1–11. [Google Scholar] [CrossRef]
- Kroposki, B.; Johnson, B.; Zhang, Y.; Gevorgian, V.; Denholm, P.; Hodge, B.-M.; Hannegan, B. Achieving a 100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable Energy. IEEE Power Energy Mag. 2017, 15, 61–73. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery Energy Storage for Enabling Integration of Distributed Solar Power Generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Abdelsalam, A.K.; Massoud, A.M.; Ahmed, S.; Enjeti, P.N. High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids. IEEE Trans. Power Electron. 2011, 26, 1010–1021. [Google Scholar] [CrossRef]
- Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. Energy Management and Operational Planning of a Microgrid with a PV-Based Active Generator for Smart Grid Applications. IEEE Trans. Ind. Electron. 2011, 58, 4583–4592. [Google Scholar] [CrossRef]
- Qiao, Y.; Shen, C.; Wu, J.; Lu, Q. The Integrated Simulation Platform for Islanding Control of Large-Scale Power Systems: Theory, Implementation and Test Results. In Proceedings of the 2006 IEEE Power Engineering Society General Meeting, Montreal, QC, Canada, 18–22 June 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Choi, J.; Marthi, P.; Debnath, S.; Arifujjaman, M.; Rexwinkel, N.; Khalilpour, F.; Arana, A.; Karimjee, H. Hardware-Based Advanced Electromagnetic Transient Simulation for a Large-Scale PV Plant in Real Time Digital Simulator. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 965–971. [Google Scholar] [CrossRef]
- Gorla, K.R.; Krishnamoorthy, V.; Ramesh, S.; Karunanithi, K. Implementation of Neural Network Controller for Grid Connected Wind–Solar PV Charging Station. In Proceedings of the 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 10–12 July 2024; pp. 18–24. [Google Scholar] [CrossRef]
- Antoniadou-Plytaria, K.E.; Kouveliotis-Lysikatos, I.N.; Georgilakis, P.S.; Hatziargyriou, N.D. Distributed and Decentralized Voltage Control of Smart Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Smart Grid 2017, 8, 2999–3008. [Google Scholar] [CrossRef]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- IEEE 1547-2018; IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE: Piscataway, NJ, USA, 2018; pp. 1–138. [CrossRef]
- Agamy, M.S.; Harfman-Todorovic, M.; Elasser, A. Ground Fault and Insulation Degradation Detection and Localization in PV Plants. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 2840–2844. [Google Scholar] [CrossRef]
- Mustafa, E.; Afia, R.S.A.; Ádam, T.Z. Electrical Integrity Tests and Analysis of Low Voltage Photovoltaic Cable Insulation under Thermal Stress. In Proceedings of the 2019 7th International Youth Conference on Energy (IYCE), Bled, Slovenia, 3–6 July 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Naskar, M.; Dharmendra, H.M.; Meena, K.P. Effect of UV Ageing on Thermo-Mechanical Properties of Ethylene-Vinyl Acetate Nanocomposite Encapsulant. In Proceedings of the 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Johor Bahru, Malaysia, 12–14 July 2021; pp. 278–281. [Google Scholar] [CrossRef]
- Shahriyar, F.; Islam, M.; Chakraborty, A.; Hasan, M.; Zaman, H.U.; Siddique, A.H. Fault and System Analysis Model of Voltage Source Control Based HVDC Transmission System. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- National Fire Data System (NFDS). General Statistics. Available online: https://nfds.go.kr/stat/general.do (accessed on 4 July 2025).
- Zhao, X.; Pu, L.; Ju, Z.; Ren, S.; Duan, W.; Wang, J. Partial Discharge Characteristics and Development of Typical XLPE Power Cable Insulation Defects. In Proceedings of the 2016 International Conference on Condition Monitoring and Diagnosis (CMD), Xi’an, China, 25–28 September 2016; pp. 623–626. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Sun, X.; Yu, X. Case Study of High-Voltage Power Cable Fault Based on High-Frequency Partial Discharge Detection. In Proceedings of the 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 27–30 April 2023; pp. 1126–1131. [Google Scholar] [CrossRef]
- Jannati, M.; Vahidi, B.; Hosseinian, S.H. Incipient Faults Monitoring in Underground Medium Voltage Cables of Distribution Systems Based on a Two-Step Strategy. IEEE Trans. Power Deliv. 2019, 34, 1647–1655. [Google Scholar] [CrossRef]
- Dhar, S.; Patnaik, R.K.; Dash, P.K. Fault Detection and Location of Photovoltaic Based DC Microgrid Using Differential Protection Strategy. IEEE Trans. Smart Grid 2018, 9, 4303–4312. [Google Scholar] [CrossRef]
- Xiong, Q.; Feng, X.; Gattozzi, A.L.; Liu, X.; Zheng, L.; Zhu, L.; Ji, S.; Hebner, R.E. Series Arc Fault Detection and Localization in DC Distribution System. IEEE Trans. Instrum. Meas. 2020, 69, 122–134. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X. Insulation Performance Evaluation of HV AC/DC XLPE Cables by 0.1 Hz tan δ Test on Circumferentially Peeled Samples. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3941–3950. [Google Scholar] [CrossRef]
- Hackam, R. Outdoor HV Composite Polymeric Insulators. IEEE Trans. Dielectr. Electr. Insul. 1999, 6, 557–585. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, K.; Shan, Y.; Zhu, C.; Liu, Z.; Liu, Z. Study of the Fire Behavior of Multilayer Cables in a Mine Tunnel. Energies 2022, 15, 2059. [Google Scholar] [CrossRef]
- IEEE 1202-2023; IEEE Standard for Flame-Propagation Testing of Wire and Cable. IEEE: Piscataway, NJ, USA, 2023; pp. 1–39. [CrossRef]
- IEEE 1185-2019; IEEE Recommended Practice for Cable Installation in Generating Stations and Industrial Facilities. IEEE: Piscataway, NJ, USA, 2020; pp. 1–127. [CrossRef]
- Azouaou, R.; Rabahallah, S.; Leulmi, S. Study of the Direction of the Harmonic Injections in the Electrical Power Systems. In Proceedings of the 39th International Universities Power Engineering Conference, Bristol, UK, 6–8 September 2004; Volume 2, pp. 944–947. [Google Scholar]
- Aurpa, T.T.; Maisha Jeba, S.; Bin Monib, K.M.; Nessa Ela, M.; Ahmed, M.S.; Musfique Anwar, M. Predictive Modeling of Fire Hazard: Integrating Environmental Factors with Machine Learning. In Proceedings of the 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), Chittagong, Bangladesh, 13–15 February 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, R.-G.; Chuang, M.-L.; Ke, C.-Y.; Chien, Y.-F.; Ho, W.-J.; Chiang, K.-C.; Hung, Y.-C.; Tsai, C.H.; Chou, C.-C. Predicting Imminent Electrical Safety Incidents Using Smart Meter Big Data with Large Language Models. IEEE Access 2024, 12, 184940–184952. [Google Scholar] [CrossRef]
- Morsy, M.A.; Shwehdi, M.H. A Supportive Approach into Life Testing and Characterization of PVC and XLPE-Insulated Cable Materials. In Proceedings of the CEIDP ’05 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Nashville, TN, USA, 16–19 October 2005; pp. 210–213. [Google Scholar] [CrossRef]
- Fernando, M.A.R.M.; Gubanski, S.M. Ageing of Silicone Rubber Insulators in Coastal and Inland Tropical Environment. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 326–333. [Google Scholar] [CrossRef]
- Ye, G.; Li, H.; Lin, F.; Tong, J.; Wu, X.; Huang, Z. Condition Assessment of XLPE Insulated Cables Based on Polarization/Depolarization Current Method. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 721–729. [Google Scholar] [CrossRef]
- Takada, T.; Fujitomi, T.; Mori, T.; Iwata, T.; Ono, T.; Miyake, H.; Tanaka, Y. New Diagnostic Method of Electrical Insulation Properties Based on Current Integration. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2549–2558. [Google Scholar] [CrossRef]
- Wang, Z.; Balog, R.S. Arc Fault and Flash Signal Analysis in DC Distribution Systems Using Wavelet Transformation. IEEE Trans. Smart Grid 2015, 6, 1955–1963. [Google Scholar] [CrossRef]
- Bakri, N.S.; Adnan, R.; Samad, A.M.; Ruslan, F.A. A Methodology for Fire Detection Using Colour Pixel Classification. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), Penang, Malaysia, 9–10 March 2018; pp. 94–98. [Google Scholar] [CrossRef]
- Long-Dong, B.; Wu, Y.-K.; Pham, M.-H. Fault Identification and Diagnosis Methods for Photovoltaic System: A Review. In Proceedings of the 2021 7th International Conference on Applied System Innovation (ICASI), Chiayi, Taiwan, 24–25 September 2021; pp. 126–129. [Google Scholar] [CrossRef]
- Long, G.; Mu, H.; Li, Y.; Zhang, D.; Ding, N.; Zhang, G. Fault Identification Technology of Series Arc Based on Deep Learning Algorithm. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ilman, A.F.; Asfani, D.A.; Negara, I.M.Y.; Fahmi, D.; Sawitri, D.R.; Syafaruddin. Design of Low Voltage Arcing Identification Based on Wavelet Transform. In Proceedings of the 2016 International Seminar on Application for Technology of Information and Communication (ISemantic), Semarang, Indonesia, 5–6 August 2016; pp. 229–234. [Google Scholar] [CrossRef]
- Xu, N.; Yang, Y.; Jin, Y.; He, J. Identification of Series Fault Arc of Low-Voltage Power Cables in Substation Based on Wavelet Transform. In Proceedings of the 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 23–25 October 2020; pp. 188–192. [Google Scholar] [CrossRef]
- Agrawa, A.; Bhadra, M.; Tyagi, M.; Kumar, A.; Pandey, A.N. Camera Based Fire Alert System Using Raspberry Pi. In Proceedings of the 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 28–29 April 2022; pp. 1183–1187. [Google Scholar] [CrossRef]
- Wu, T.; Liu, K.; Liu, T.; Xiao, B.; Peng, Y.; Lei, X.; Su, Z.; Tang, P. Insulation Property of Wire-Plane Gap under Fire Condition: Effects of Vegetation Flame Conductivity. In Proceedings of the 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 26–29 November 2015; pp. 1600–1605. [Google Scholar] [CrossRef]
- IEC 60269-1:2024; Low-voltage fuses—Part 1: General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2024. Available online: https://webstore.iec.ch/en/publication/1232 (accessed on 20 September 2025).
Parameter | Symbol | Unit | Value |
---|---|---|---|
Nominal power | 460 | ||
Short-circuit current | 10.70 | ||
Open-circuit voltage | 53.25 | ||
Maximum power current | 10.25 | ||
Maximum power voltage | 44.89 | ||
Maximum System Voltage | 1500 | ||
Weight | 25.5 |
State | Range | Time Step | Time [hh:mm:ss] | Duration [mm:ss] |
---|---|---|---|---|
Steady State | onset | 57,600 | 16:36:19 | 11:40 |
offset | 60,765 | 16:47:59 | ||
Abnormal State | onset | 60,765 | 16:47:59 | 10:30 |
offset | 63,504 | 16:58:29 |
Time Step | 58,000 | 59,000 | 60,000 |
---|---|---|---|
Time [hh:mm:ss] | 16:37:47 | 16:41:32 | 16:45:13 |
PV-M1 [°C] | 24.7 | 24.1 | 25.0 |
PV-M2 [°C] | 25.0 | 24.6 | 25.6 |
PV-M3 [°C] | 24.8 | 23.5 | 24.1 |
PV-M4 [°C] | 25.1 | 24.8 | 25.5 |
PV-M5 [°C] | 24.4 | 24.2 | 24.8 |
PV-M6 [°C] | 25.4 | 25.1 | 25.7 |
Time Step | 61,000 | 62,000 | 63,000 |
---|---|---|---|
Time [hh:mm:ss] | 16:48:51 | 16:52:56 | 16:56:38 |
PV-M1 [°C] | 26.2 | 25.2 | 23.9 |
PV-M2 [°C] | 26.5 | 25.9 | 25.0 |
PV-M3 [°C] | 25.1 | 24.7 | 23.7 |
PV-M4 [°C] | 26.3 | 25.8 | 24.9 |
PV-M5 [°C] | 25.6 | 24.8 | 24.1 |
PV-M6 [°C] | 26.2 | 25.8 | 25.4 |
Time Step | 58,000 | 59,000 | 60,000 |
---|---|---|---|
Time [hh:mm:ss] | 16:37:47 | 16:41:32 | 16:45:13 |
HAA [°C] | 23.0 | 23.0 | 23.1 |
Time Step | 60,899 | 61,607 | 62,351 |
---|---|---|---|
Time [hh:mm:ss] | 16:48:29 | 16:51:05 | 16:54:14 |
HAA [°C] | 85.5 | 189.0 | 145.5 |
Time Step | 59,250 | 59,500 | 60,250 |
---|---|---|---|
Time [hh:mm:ss] | 16:42:24 | 16:43:18 | 16:46:09 |
PV-M1 [V] | 45.1 | 45.2 | 46.1 |
PV-M2 [V] | 44.2 | 44.0 | 45.1 |
PV-M3 [V] | 44.3 | 44.7 | 45.2 |
PV-M4 [V] | 42.6 | 44.3 | 44.3 |
PV-M5 [V] | 43.1 | 44.3 | 44.1 |
PV-M6 [V] | 43.5 | 43.9 | 44.3 |
Time Step | 61,000 | 62,000 | 63,000 |
---|---|---|---|
Time [hh:mm:ss] | 16:48:51 | 16:52:56 | 16:56:38 |
PV-M1 [V] | 45.9 | 45.6 | 46.0 |
PV-M2 [V] | 45.1 | 45.4 | 45.3 |
PV-M3 [V] | 45.3 | 45.5 | 45.5 |
PV-M4 [V] | 44.0 | 44.5 | 44.6 |
PV-M5 [V] | 43.4 | 43.3 | 42.9 |
PV-M6 [V] | 44.6 | 44.3 | 44.4 |
PV Module | Time Step | Time [hh:mm:ss] | Voltage [V] | Increment Rate [%] | |
---|---|---|---|---|---|
1 | PV-M6 | 61,818 | 16:51:50 | 49.4 | +9.78 |
2 | PV-M4 | 61,820 | 16:51:51 | 49.2 | +9.33 |
3 | PV-M3 | 61,830 | 16:51:55 | 50.9 | +13.11 |
4 | PV-M3 | 61,836 | 16:52:00 | 51.0 | +13.33 |
PV Module | Time Step | Time [hh:mm:ss] | Voltage [V] | Decay Rate [%] | |
---|---|---|---|---|---|
1 | PV-M1 | 61,808 | 16:51:49 | 26.8 | 40.44 |
2 | PV-M2 | 61,816 | 16:51:50 | 14.4 | 68.00 |
3 | PV-M1 | 61,817 | 16:51:50 | 41.0 | 8.89 |
4 | PV-M5 | 61,845 | 16:52:07 | 39.7 | 11.78 |
5 | PV-M4 | 61,852 | 16:52:10 | 31.7 | 29.56 |
6 | PV-M3 | 61,856 | 16:52:11 | 36.0 | 20.00 |
7 | PV-M3 | 61,858 | 16:52:13 | 41.8 | 7.11 |
8 | PV-M6 | 61,861 | 16:52:14 | 38.5 | 14.44 |
PV Module | Time Step | Time [hh:mm:ss] | Current [A] | Decay Rate [%] | |
---|---|---|---|---|---|
1 | PV-M6 | 61,796 | 16:51:46 | 1.9 | 24.0 |
2 | PV-M3 | 61,808 | 16:51:49 | 1.8 | 28.0 |
3 | PV-M6 | 61,812 | 16:51:49 | 1.7 | 32.0 |
4 | PV-M3 | 61,815 | 16:51:50 | 1.5 | 40.0 |
5 | PV-M6 | 61,818 | 16:51:50 | 0.8 | 68.0 |
6 | PV-M4 | 61,820 | 16:51:51 | 1.2 | 52.0 |
7 | PV-M3 | 61,822 | 16:51:52 | 1.9 | 24.0 |
8 | PV-M4 | 61,823 | 16:51:53 | 1.8 | 28.0 |
9 | PV-M3 | 61,826 | 16:51:53 | 1.8 | 28.0 |
10 | PV-M4 | 61,828 | 16:51:54 | 1.3 | 48.0 |
11 | PV-M3 | 61,830 | 16:51:55 | 0.1 | 96.0 |
12 | PV-M3 | 61,832 | 16:51:57 | 1.4 | 44.0 |
13 | PV-M3 | 61,834 | 16:51:58 | 1.5 | 40.0 |
14 | PV-M3 | 61,836 | 16:52:00 | −0.1 | 104.0 |
15 | PV-M3 | 61,838 | 16:52:01 | 1.9 | 24.0 |
16 | PV-M3 | 61,844 | 16:52:07 | 1.8 | 28.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-G.; Jung, B.-I.; Park, J.-H.; Lee, Y.-G.; Park, S.-Y. Analysis of Photovoltaic Cable Degradation and Fire Precursor Signals for Optimizing Integrated Power Grids. Energies 2025, 18, 5087. https://doi.org/10.3390/en18195087
Kim S-G, Jung B-I, Park J-H, Lee Y-G, Park S-Y. Analysis of Photovoltaic Cable Degradation and Fire Precursor Signals for Optimizing Integrated Power Grids. Energies. 2025; 18(19):5087. https://doi.org/10.3390/en18195087
Chicago/Turabian StyleKim, Seong-Gwang, Byung-Ik Jung, Ju-Ho Park, Yeo-Gyeong Lee, and Sang-Yong Park. 2025. "Analysis of Photovoltaic Cable Degradation and Fire Precursor Signals for Optimizing Integrated Power Grids" Energies 18, no. 19: 5087. https://doi.org/10.3390/en18195087
APA StyleKim, S.-G., Jung, B.-I., Park, J.-H., Lee, Y.-G., & Park, S.-Y. (2025). Analysis of Photovoltaic Cable Degradation and Fire Precursor Signals for Optimizing Integrated Power Grids. Energies, 18(19), 5087. https://doi.org/10.3390/en18195087