Artificial Intelligence Applications for Energy Storage: A Comprehensive Review
Abstract
1. Introduction
Review Framework and Methodology
2. AI Techniques in Energy Storage Systems
2.1. Machine Learning Fundamentals
2.2. Deep Learning Applications
2.3. Reinforcement Learning for Energy Management
2.4. Optimization Algorithms
3. Battery Management Systems and State Estimation
3.1. State of Charge Estimation
3.2. State of Health Monitoring
Technical Challenges in SoH Monitoring
3.3. Predictive Maintenance
3.4. Fault Detection and Diagnosis
4. Energy Storage Optimization and Control
4.1. Charging Optimization Strategies
4.2. Energy Management Systems
4.3. Load Forecasting and Demand Prediction
4.4. System Sizing and Placement Optimization
5. Grid-Scale Applications and Smart Microgrids
5.1. Grid Integration and Stability
5.2. Microgrid Management
5.3. Renewable Energy Integration
6. Thermal Management and Safety Applications
6.1. Thermal Modeling and Control
6.2. Fire Prevention and Suppression
7. Challenges and Limitations
7.1. Data Quality and Availability
Self-Supervised Learning and Generative Approaches for Data Scarcity
7.2. Model Interpretability and Trust
7.3. Computational Requirements and Real-Time Constraints
7.4. Critical Comparison of AI Approaches
7.5. Strategic Comparative Analysis and Technology Outlook
7.6. Root Causes and Pathways for Overcoming Persistent Challenges
8. Future Research Directions
8.1. Emerging AI Technologies
8.2. Integration with Digital Technologies
8.3. Sustainability and Circular Economy
9. Energy Storage and the Option Value Concept
9.1. Introduction to Real Options in Energy Storage Planning
9.2. Energy Storage as a Real Option
9.3. Quantification Methods and Modeling Frameworks
9.4. Empirical Evidence and Case Studies
9.5. Portfolio Effects and Technology Interactions
9.6. Implications for Planning and Policy
9.7. Future Directions and Research Needs
10. Discussion
10.1. Synthesis of Key Findings
10.2. Comparative Analyses of Key Studies
10.3. Evaluation of Strengths and Weaknesses
10.4. Gaps and Future Research Priorities
10.5. Implications for Research and Practice
11. Conclusions
11.1. Current Limitations and Challenges
11.2. Future Outlook
11.3. Recommendations for Future Research
- Data Quality and Standardization: Develop standardized datasets and benchmarks for evaluating AI models in energy storage applications. Address data quality issues through improved sensor technologies and data preprocessing techniques.
- Explainable AI Development: Advance research in explainable AI (Ex-AI) techniques specifically tailored for energy storage applications to improve model interpretability and industrial acceptance.
- Real-Time Implementation: Focus on developing lightweight AI models suitable for real-time applications with limited computational resources while maintaining high accuracy.
- Integration and Interoperability: Research methods for seamlessly integrating AI techniques with existing energy storage systems and developing interoperable standards.
- Long-Term Studies: Conduct extended studies to validate AI model performance over complete battery lifecycles and under diverse operating conditions.
- Multi-Scale Modeling: Develop AI techniques capable of handling multi-scale and multi-physics modeling for comprehensive system optimization.
11.4. Final Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jayendra, J.; Mehare, A.; Wandhekar, A.; Pawar, S.; Chavan, P.; Nigade, V. Artificial Intelligence in Energy Management: A Comprehensive Literature Review on Methods, Applications, and Challenges. Int. J. Sci. Res. Eng. Trends 2025, 11, 2683–2688. [Google Scholar] [CrossRef]
- Debs, A.S. Modern Power Systems Control and Operation; Springer: New York, NY, USA, 1988. [Google Scholar] [CrossRef]
- Huan, Z.; Sun, C.; Ge, M. Progress in Profitable Fe-Based Flow Batteries for Broad-Scale Energy Storage. WIREs Energy Environ. 2024, 13, e541. [Google Scholar] [CrossRef]
- Omojola, A.F.; Ilabija, C.O.; Onyeka, C.I.; Ishiwu, J.I.; Olaleye, T.G.; Ozoemena, I.J.; Nzereogu, P.U. Artificial Intelligence-Driven Strategies for Advancing Lithium-Ion Battery Performance and Safety. Int. J. Adv. Eng. Manag. 2024, 6, 452–484. [Google Scholar] [CrossRef]
- Miraftabzadeh, S.M.; Longo, M.; Di Martino, A.; Saldarini, A.; Faranda, R.S. Exploring the Synergy of Artificial Intelligence in Energy Storage Systems for Electric Vehicles. Electronics 2024, 13, 1973. [Google Scholar] [CrossRef]
- Jabakumar, A.K. Optimizing Energy Storage Systems with AI-Based Control Strategies. Res. J. Comput. Syst. Eng. 2024, 5, 95–105. Available online: https://www.technicaljournals.org/RJCSE/index.php/journal/article/view/98 (accessed on 12 August 2025).
- Ma, L.; Hu, C.; Cheng, F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network. J. Energy Storage 2021, 37, 102440. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Habibi, S. Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application. Energies 2022, 16, 185. [Google Scholar] [CrossRef]
- Xiong, R.; Shen, W. Battery State of Charge and State of Energy Estimation. In Advanced Battery Management Technologies for Electric Vehicles; Wiley: Hoboken, NJ, USA, 2019; pp. 67–93. [Google Scholar] [CrossRef]
- Vashist, D.; Raj, R.; Deepanshu, S. Artificial Intelligence in Electric Vehicle Battery Management System: A Technique for Better Energy Storage. SAE Technical Paper Series. In Proceedings of the SAENIS TTTMS Thermal Management Systems Conference, Delhi, India, 19–21 September 2024. [Google Scholar] [CrossRef]
- Lam, D.H.C.; Lim, Y.S.; Wong, J.; Hau, L.C. Machine Learning for Estimation of State-of-Charge of Energy Storage System. In Proceedings of the 2021 International Conference on Smart City and Green Energy (ICSCGE), Hangzhou, China, 20–22 November 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Sorouri, H.; Oshnoei, A.; Che, Y.; Teodorescu, R. A comprehensive review of hybrid battery state of charge estimation: Exploring physics-aware AI-based approaches. J. Energy Storage 2024, 100, 113604. [Google Scholar] [CrossRef]
- Nallamala, S.K.; Punukollu, P.; Kodali, S.; Punukollu, M.; Burugu, S.; Yerneni, R.P. AI-Powered Battery Management Systems for Electric Vehicles: Leveraging Machine Learning for State-of-Charge Estimation, Battery Health Monitoring, and Beyond. J. Artif. Intell. Mach. Learn. Syst. 2022, 6, 66–103. [Google Scholar]
- Vakharia, V.; Shah, M.; Nair, P.; Borade, H.; Sahlot, P.; Wankhede, V. Estimation of Lithium-ion Battery Discharge Capacity by Integrating Optimized Explainable-AI and Stacked LSTM Model. Batteries 2023, 9, 125. [Google Scholar] [CrossRef]
- Vidal, C.; Malysz, P.; Kollmeyer, P.; Emadi, A. Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. IEEE Access 2020, 8, 52796–52814. [Google Scholar] [CrossRef]
- Rauf, H.; Khalid, M.; Arshad, N. Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling. Renew. Sustain. Energy Rev. 2022, 156, 111903. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Ansari, S.; Miah, M.S.; Meraj, S.T.; Hasan, K. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: Methods, implementations, issues. J. Energy Storage 2022, 55, 105752. [Google Scholar] [CrossRef]
- Ali, S.R.M.; Sharma, G.; Sheker, P.; Avns, S.; Rajarajeswari, B. Leveraging Artificial Intelligence and Machine Learning Techniques Improve Performance of Electrical Systems and Smart Grids. Int. J. Integr. Stud. (IJIS) 2025, 1, 1–14. [Google Scholar] [CrossRef]
- Hamdan, A.; Ibekwe, K.I.; Ilojianya, V.I. AI in renewable energy: A review of predictive maintenance and energy optimization. Int. J. Sci. Res. Arch. 2024, 11, 718–729. [Google Scholar] [CrossRef]
- Cavus, M.; Dissanayake, D.; Bell, M. Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management. Energies 2025, 18, 1041. [Google Scholar] [CrossRef]
- Rojek, I.; Mikołajewski, D.; Mroziński, A.; Macko, M. Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage. Energies 2023, 16, 6613. [Google Scholar] [CrossRef]
- Li, G.; Liu, S. Research on fault prediction and diagnosis methods of energy storage system based on big data and artificial intelligence. Energy Storage Sci. Technol. 2024, 13, 3653. [Google Scholar]
- Han, S. Research on fault prediction and diagnosis methods for energy storage systems based on big data and artificial intelligence. Energy Storage Sci. Technol. 2025, 14, 2114. [Google Scholar]
- Samanta, A.; Chowdhuri, S.; Williamson, S.S. Machine learning-based data-driven fault detection/diagnosis of lithium-ion battery: A critical review. Electronics 2021, 10, 1309. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Majumdar, P. Artificial Intelligence-Machine Learning Algorithms for the Simulation of Combustion Thermal Analysis. Heat Transf. Eng. 2023, 45, 176–193. [Google Scholar] [CrossRef]
- Chekifi, T.; Boukraa, M.; Benmoussa, A. Artificial Intelligence for Thermal Energy Storage Enhancement: A Comprehensive Review. ASME J. Energy Resour. Technol. 2024, 146, 060802. [Google Scholar] [CrossRef]
- Mehraj, N.; Mateu, C.; Cabeza, L.F. Use of artificial intelligence methods in designing thermal energy storage tanks: A bibliometric analysis. J. Energy Storage 2024, 97, 112794. [Google Scholar] [CrossRef]
- Wiering, M.A.; Van Otterlo, M. Reinforcement Learning: State-of-the-Art; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Song, H.; Liu, C.; Amani, A.M.; Gu, M.; Jalili, M. Smart optimization in battery energy storage systems: An overview. J. Energy Storage 2024, 17, 100378. [Google Scholar] [CrossRef]
- Alam, M.M.; Rahman, M.H.; Ahmed, M.F.; Chowdhury, M.Z. Deep learning based optimal energy management for photovoltaic and battery energy storage integrated home micro-grid system. Sci. Rep. 2022, 12, 15133. [Google Scholar] [CrossRef]
- Promasa, N.; Songkoh, E.; Phonkaphon, S.; Sirichunchuen, K.; Ketkaew, C.; Unahalekhaka, P. Optimization of Sizing of Battery Energy Storage System for Residential Households by Load Forecasting with Artificial Intelligence (AI): Case of EV Charging Installation. Energies 2025, 18, 1245. [Google Scholar] [CrossRef]
- Bertsekas, D.P. A Course in Reinforcement Learning; Athena Scientific: Nashua, NH, USA, 2024. [Google Scholar]
- Giglio, E.; Luzzani, G.; Terranova, V.; Trivigno, G.; Niccolai, A.; Grimaccia, F. An Efficient Artificial Intelligence Energy Management System for Urban Building Integrating Photovoltaic and Storage. IEEE Access 2023, 11, 18673–18688. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.C. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy Environ. 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Talaat, M.; Elkholy, M.H.; Alblawi, A.; Said, T. Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artif. Intell. Rev. 2023, 56, 10557–10611. [Google Scholar] [CrossRef]
- Cao, Z.; Han, X.; Lyons, W.; O’Rourke, F. Energy management optimisation using a combined Long Short-Term Memory recurrent neural network—Particle Swarm Optimisation model. J. Clean. Prod. 2021, 326, 129246. [Google Scholar] [CrossRef]
- Patty, S.; Malakar, T. Assessment of battery energy storage uses in microgrid operation under varied demand uncertainties through a machine learning based stochastic optimization approach. Phys. Scr. 2025, 100, 036013. [Google Scholar] [CrossRef]
- Sharma, V.; Cortes, A.; Cali, U. Use of Forecasting in Energy Storage Applications: A Review. IEEE Access 2021, 9, 114690–114704. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Haq, I.U.; Hamdy, M.; Mauro, G.M. Efficient short-term electricity load forecasting for effective energy management. Sustain. Energy Technol. Assess. 2022, 53, 102337. [Google Scholar] [CrossRef]
- Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research opportunities. Energies 2018, 11, 596. [Google Scholar] [CrossRef]
- Wang, L.; Qu, Y.; Wang, S.; Liu, Y.; Yang, R.; Ren, X.; Ma, Y. Optimal allocation of customer energy storage based on power big data and improved LSTM load forecasting. Energy Rep. 2024, 11, 3902–3913. [Google Scholar] [CrossRef]
- Duan, F.; Eslami, M.; Khajehzadeh, M.; Basem, A.; Jasim, D.J.; Palani, S. Optimization of a photovoltaic/wind/battery energy-based microgrid in distribution network using machine learning and fuzzy multi-objective improved Kepler optimizer algorithms. Sci. Rep. 2024, 14, 13354. [Google Scholar] [CrossRef]
- Xuan, J.; Chen, Z.; Zheng, J.; Zhang, Z.; Shi, Y. Optimal planning of hybrid electric-hydrogen energy storage systems via multi-objective particle swarm optimization. Front. Energy Res. 2023, 10, 1034985. [Google Scholar] [CrossRef]
- Wong, L.A.; Ramachandaramurthy, V.K.; Walker, S.L. Optimal placement and sizing of battery energy storage system for losses reduction using whale optimization algorithm. J. Energy Storage 2019, 26, 100892. [Google Scholar] [CrossRef]
- Fossati, J.P.; Galarza, A.; Martín-Villate, A.; Fontan, L. A method for optimal sizing energy storage systems for microgrids. Renew. Energy 2015, 77, 539–549. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Restrepo-Cuestas, B.J. Optimal location and sizing of distributed generators and energy storage systems in microgrids: A review. Energies 2022, 16, 106. [Google Scholar] [CrossRef]
- Nuvvula, R.S.S.; Kumar, P.P.; Ahammed, S.R.; Hushein, R.H.; Reddy, R.S.S.; Babu, B.H.; Ali, A. Distributed Reinforcement Learning Framework for Autonomous Optimization of Grid-Scale Energy Storage Systems in Renewable Energy Integration. In Proceedings of the 2024 12th International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 27–29 May 2024. [Google Scholar] [CrossRef]
- Handel, K.; Anitha, A.E.; Rigo-Mariani, R.; Schulte, K.; Haubrock, J. Optimal Decision Tree Design for Near Real-Time Control of Battery Energy Storage Systems. Symposium on Symbolic and Numeric Algorithms for Scientific Computing. In Proceedings of the 2024 26th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 16–19 September 2024. [Google Scholar] [CrossRef]
- Miao, Y.; He, X.; Gu, C. Modeling lithium-ion Battery in Grid Energy Storage Systems: A Big Data and Artificial Intelligence Approach, Industrial Cyber-Physical Systems. In Proceedings of the 2023 IEEE 6th International Conference on Industrial Cyber-Physical Systems (ICPS), Wuhan, China, 8–11 May 2023. [Google Scholar] [CrossRef]
- Kumar, N.; Prabhansu. Artificial intelligence and machine learning applications in energy storage system: Technology overview and perspectives. In Emerging Trends in Energy Storage Systems and Industrial Applications; Kumar, N., Prabhansu, Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–26. [Google Scholar] [CrossRef]
- Yun, P.; Wu, H.; Alsenani, T.R.; Bouzgarrou, S.M. On the utilization of artificial intelligence for studying and multi-objective optimizing a compressed air energy storage integrated energy system. Energy Rep. 2024, 84, 110839. [Google Scholar] [CrossRef]
- Ahmed, I.; Pedersen, A.; Mihet-Popa, L. Smart Microgrid Optimization using Deep Reinforcement Learning by utilizing the Energy Storage Systems. In Proceedings of the 2024 4th International Conference on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 8–10 January 2024. [Google Scholar] [CrossRef]
- Quizhpe, K.; Arévalo, P.; Ochoa-Correa, D.; Villa-Ávila, E. Optimizing Microgrid Planning for Renewable Integration in Power Systems: A Comprehensive Review. Electronics 2024, 13, 3620. [Google Scholar] [CrossRef]
- Yan, Z.; Li, X.; Zhou, H.; Xie, Z.; Wang, Y.; Hong, L. Learning Strategies for Volt-VAR Optimization with PV Inverters and Battery Energy Storage Systems in Distribution Network. In Proceedings of the 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE), Guangzhou, China, 12–14 May 2023. [Google Scholar] [CrossRef]
- Mohammadi, E.; Alizadeh, M.; Asgarimoghaddam, M.; Wang, X.; Simões, M.G. A review on application of artificial intelligence techniques in microgrids. IEEE J. Emerg. Sel. Top. Ind. Electron. 2022, 3, 878–890. [Google Scholar] [CrossRef]
- Wu, T.; Wang, J. Artificial intelligence for operation and control: The case of microgrids. Electr. J. 2021, 34, 106890. [Google Scholar] [CrossRef]
- Joshi, A.; Capezza, S.; Alhaji, A.; Chow, M.Y. Survey on AI and Machine Learning Techniques for Microgrid Energy Management Systems. IEEE/CAA J. Autom. Sin. 2023, 10, 1513–1529. [Google Scholar] [CrossRef]
- Filho, E.M.L.; Silveira, A.B.; Ferreira, A.M.; Marques, J.A.L.; Batista, J.G.; Guimares, G.D.F.; Alexandria, A.R.D.; Rodrigues, J.J.P.C. Optimization of Energy Storage Systems with Renewable Energy Generation and Consumption Data. In Proceedings of the 2024 IEEE 7th Student Conference on Electric Machines and Systems (SCEMS), Macao, China, 6–8 November 2024. [Google Scholar] [CrossRef]
- Amini, M.; Baradaran Rohani, M. The role of machine learning and artificial intelligence in enhancing renewable energy through data science. World J. Technol. Sci. Res. 2024, 12, 2341–2365. [Google Scholar] [CrossRef]
- Kiasari, M.; Ghaffari, M.; Aly, H.H. A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems. Energies 2024, 17, 4128. [Google Scholar] [CrossRef]
- Ajibade, S.-S.; Zaidi, A.; Al Luhayb, A.S.M.; Adediran, A.O.; Voumik, L.C.; Rabbi, F. New Insights into the Emerging Trends Research of Machine and Deep Learning Applications in Energy Storage: A Bibliometric Analysis and Publication Trends. Int. J. Energy Econ. Policy 2023, 13, 303–314. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: London, UK, 1998. [Google Scholar]
- Zhou, Y. Advances of machine learning in multi-energy district communities mechanisms, applications and perspectives. Energy AI 2022, 10, 100187. [Google Scholar] [CrossRef]
- Kumar, S.; Kassamkuttiyil, H.S.; Bhadauria, K.S.; Shah, J.V.; Khanna, V.; Jena, P. Machine Learning Technique for Hydrogen Fuel Cell Based Microgrid Energy Management. In Proceedings of the 2024 23rd National Power Systems Conference (NPSC), Indore, India, 14–16 December 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. Overview of supervised learning. In The Elements of Statistical Learning; Springer: New York, NY, USA, 2009; pp. 9–42. [Google Scholar]
- Radhoush, S.; Whitaker, B.M.; Nehrir, H. An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. Energies 2023, 16, 5972. [Google Scholar] [CrossRef]
- Celebi, M.E.; Aydin, K. Unsupervised learning algorithms. In Unsupervised Learning Algorithms; Springer: Cham, Switzerland, 2016; pp. 3–24. Available online: https://link.springer.com/content/pdf/10.1007/978-3-319-24211-8.pdf (accessed on 12 August 2025).
- Dike, H.U.; Zhou, Y.; Deveerasetty, K.K. Unsupervised learning based on artificial neural network: A review. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; Available online: https://ieeexplore.ieee.org/abstract/document/8612259/ (accessed on 12 August 2025).
- Gao, T.; Lu, W. Machine learning toward advanced energy storage devices and systems. iScience 2021, 24, 101936. [Google Scholar] [CrossRef] [PubMed]
- Memarzadeh, G.; Keynia, F. A new optimal energy storage system model for wind power producers based on long short term memory and Coot Bird Search Algorithm. J. Energy Storage 2021, 44 Pt A, 103401. [Google Scholar] [CrossRef]
- He, J. Enhancing Energy Management in New Energy Vehicles and Energy Storage Systems Through Advanced Data Analysis and Machine Learning. Adv. Econ. Manag. Political Sci. 2024, 89, 61–67. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of Charge and Temperature Joint Estimation Based on Ultrasonic Reflection Waves for Lithium-Ion Battery Applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Fathollahi, A. Machine Learning and Artificial Intelligence Techniques in Smart Grids Stability Analysis: A Review. Energies 2025, 18, 3431. [Google Scholar] [CrossRef]
- Memarzadeh, G.; Noori, H.; Memarzadeh, R.; Amirteimoury, F.; Keynia, F.; Gholizadeh, M.H. Optimal energy storage system management in an uncertain smartgrid. J. Energy Storage 2025, 117, 116125. [Google Scholar] [CrossRef]
- Giannelos, S.; Pudjianto, D.; Bellizio, F.; Qiu, D.; Strbac, G. A comprehensive review of option value in energy economics. IET Renew. Power Gener. 2025, in press. [CrossRef]
- Lee, J.H.; Kadero, M.; Ramin, K.; Kamal, R.; Khan, A. AI-Driven Fire Detection in Gas-to-Liquids (GTL) Facilities: A Paradigm Shift in Industrial Safety. Future Eng. J. 2025, 2, 23–27. [Google Scholar] [CrossRef]
- Ekunke, O.V.; Kehinde, T.O.; Owunna, I.B. Innovations in Fire Detection and Suppression Systems for Oil Refinery Operations. Path Sci. 2024, 10, 4001–4015. [Google Scholar] [CrossRef]
- Zhang, T.; Strbac, G. Novel Artificial Intelligence Applications in Energy: A Systematic Review. Energies 2025, 18, 3747. [Google Scholar] [CrossRef]
- Krishna, G.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Digital Technology Implementation in Battery-Management Systems for Sustainable Energy Storage: Review, Challenges, and Recommendations. Multidisciplinary Digital Publishing Institute. Electronics 2022, 11, 2695. [Google Scholar] [CrossRef]
- Kwon, K.; Lee, H.-B.; Kim, N.; Park, S.; Joshua, S.R. Integrated Battery and Hydrogen Energy Storage for Enhanced Grid Power Savings and Green Hydrogen Utilization. Multidisciplinary Digital Publishing Institute. Appl. Sci. 2024, 14, 7631. [Google Scholar] [CrossRef]
- Greenwood, D.M.; Djapic, P.; Sarantakos, I.; Giannelos, S.; Strbac, G.; Creighton, A. Pragmatic method for assessing the security of supply in future smart distribution networks. CIRED 2020, 2020, 221–224. [Google Scholar] [CrossRef]
- Ilo, A.; Prata, R.; Strbac, G.; Giannelos, S.; Bissell, G.R.; Kulmala, A.; Constantinescu, N.; Samovich, N.; Iliceto, A. White Paper ETIP SNET—Holistic Architectures For Power Systems. 2019. Available online: http://hdl.handle.net/20.500.12708/39729 (accessed on 12 August 2025).
- Giannelos, S.; Konstantelos, I.; Zhang, X.; Strbac, G. A stochastic optimization model for network expansion planning under exogenous and endogenous uncertainty. Electr. Power Syst. Res. 2025, 248, 111894. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, X.; Zhang, L.; Giannelos, S.; Strbac, G. Flexibility enhancement of urban energy systems through coordinated space heating aggregation of numerous buildings. Appl. Energy 2024, 374, 123971. [Google Scholar] [CrossRef]
- Konstantelos, I.; Giannelos, S.; Strbac, G. Strategic valuation of smart grid technology options in distribution networks. IEEE Trans. Power Syst. 2017, 32, 1293–1303. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, D.; Li, N.; Zhao, F.; Huang, B.; Hu, J. Study on Evaluation Method of Substitution Effect for Grid-side Functional Alternative Energy Storage. In Proceedings of the 2023 International Conference on Power Energy Systems and Applications (ICoPESA), Nanjing, China, 24–26 February 2023; pp. 197–201. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Aunedi, M.; Zhang, X.; Ameli, H.; Pudjianto, D.; Konstantelos, I.; Strbac, G. Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids. Energies 2023, 16, 5088. [Google Scholar] [CrossRef]
- Giannelos, S.; Zhang, T.; Pudjianto, D.; Konstantelos, I.; Strbac, G. Investments in Electricity Distribution Grids: Strategic versus Incremental Planning. Energies 2024, 17, 2724. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Investment model for cost-effective integration of solar PV capacity under uncertainty using a portfolio of energy storage and soft open points. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of Soft Open Points in distribution networks. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G. Option value of EV smart charging concepts in transmission expansion planning under uncertainty. In Proceedings of the 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 14–16 June 2022; pp. 63–68. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of dynamic line rating and storage. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Hwang, S.; Mun-Kyeom, K. Optimal investment strategy based on a real options approach for energy storage systems in the Korean power market. Energy Rep. 2024, 11, 5859–5873. [Google Scholar] [CrossRef]
- Hammann, E.; Madlener, R.; Hilgers, C. Economic Feasibility of a Compressed Air Energy Storage System Under Market Uncertainty: A Real Options Approach. Energy Procedia 2017, 105, 3798–3805. [Google Scholar] [CrossRef]
- Moriarty, J.; Palczewski, J. Imbalance Market Real Options and the Valuation of Storage in Future Energy Systems. Risks 2019, 7, 39. [Google Scholar] [CrossRef]
- Xiu, X.; Li, B. NaN. Study on energy storage system investment decision based on real option theory. In Proceedings of the International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012), Hangzhou, China, 8–9 September 2012. [Google Scholar] [CrossRef]
- Qu, J.; Jeon, W. Price and subsidy under uncertainty: Real-option approach to optimal investment decisions on energy storage with solar PV. Energy Environ. 2021, 33, 263–282. [Google Scholar] [CrossRef]
- Giannelos, S.; Djapic, P.; Papadaskalopoulos, D.; Strbac, G. Report on Cost-Benefit Analysis and Its Components for the UPGRID Project (Technical Report); UPGRID Project; Schneider Electric: Rueil-Malmaison, France, 2018. [Google Scholar]
- Münster, M.; Sneum, D.M.; Pedersen, R.B.; Bühler, F.; Elmegaard, B.; Giannelos, S.; Zhang, X.; Strbac, G.; Berger, M.; Radu, D.; et al. Sector Coupling: Concepts, State-of-the-Art and Perspectives; European Technology and Innovation Platform; Imperial College London: London, UK, 2020. [Google Scholar]
- Holttinen, H.; Kiviluoma, J.; Helistö, N.; Levy, T.; Menemenlis, N.; Jun, L.; Cutululis, N.; Koivisto, M.; Das, K.; Orths, A.; et al. Design and Operation of Energy Systems with Large Amounts of Variable Generation: Final Summary Report, IEA Wind TCP Task 25; VTT Technology; VTT Technical Research Centre of Finland: Espoo, Finland, 2021. [Google Scholar] [CrossRef]
- Beulertz, D.; Charousset, S.; Most, D.; Giannelos, S.; Yueksel-Erguen, I. Development of a modular framework for future energy system analysis. In Proceedings of the 2019 54th International Universities Power Engineering Conference (UPEC), Bucharest, Romania, 3–6 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Most, D.; Giannelos, S.; Yueksel-Erguen, I.; Beulertz, D.; Haus, U.U.; Charousset-Brignol, S.; Frangioni, A. A Novel Modular Optimization Framework for Modelling Investment and Operation of Energy Systems at European Level; Zuse Institute Berlin: Berlin, Germany, 2020. [Google Scholar]
- Charousset-Brignol, S.; van Ackooij, W.; Oudjane, N.; Daniel, D.; Noceir, S.; Haus, U.U.; Lazzaro, A.; Frangioni, A.; Lobato, R.; Ghezelsoflu, A.; et al. Synergistic Approach of Multi-Energy Models for a European Optimal Energy System Management Tool; European Dissemination Media Agency: Staffordshire, UK, 2021. [Google Scholar]
- Giannelos, S.; Borozan, S.; Konstantelos, I.; Strbac, G. Option value, investment costs and deployment levels of smart grid technologies. Sustain. Energy Res. 2024, 11, 47. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Option value of demand-side response schemes under decision-dependent uncertainty. IEEE Trans. Power Syst. 2018, 33, 5103–5113. [Google Scholar] [CrossRef]
- Landry, M.; Gagnon, Y. Energy storage: Technology applications and policy options. Energy Procedia 2015, 79, 315–320. [Google Scholar] [CrossRef]
- Murrant, D.; Radcliffe, J. Assessing energy storage technology options using a multi-criteria decision analysis-based framework. Appl. Energy 2018, 231, 788–802. [Google Scholar] [CrossRef]
- Rahman, M.M.; Oni, A.O.; Gemechu, E.; Kumar, A. Assessment of energy storage technologies: A review. Energy Convers. Manag. 2020, 223, 113295. [Google Scholar] [CrossRef]
- Acar, C. A comprehensive evaluation of energy storage options for better sustainability. Int. J. Energy Res. 2018, 42, 3732–3746. [Google Scholar] [CrossRef]
- Giannelos, S.; Jain, A.; Borozan, S.; Falugi, P.; Moreira, A.; Bhakar, R.; Mathur, J.; Strbac, G. Long-Term Expansion Planning of the Transmission Network in India under Multi-Dimensional Uncertainty. Energies 2021, 14, 7813. [Google Scholar] [CrossRef]
- Borozan, S.; Giannelos, S.; Strbac, G. Strategic network expansion planning with electric vehicle smart charging concepts as investment options. Adv. Appl. Energy 2022, 5, 100077. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Moreira, A.; Strbac, G. Techno-economic analysis of smart EV charging for expansion planning under uncertainty. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Stochastic optimisation-based valuation of smart grid options under firm DG contracts. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Lin, W.; Hu, X. Effect of option’s time value on decision of exercising or selling option. In Proceedings of the 2011 International Conference on Management Science & Engineering 18th Annual Conference Proceedings, Rome, Italy, 13–15 September 2011; pp. 835–840. [Google Scholar] [CrossRef]
- Song, E.Y.; FitzPatrick, G.J.; Lee, K.B.; Griffor, E. A Methodology for Modeling Interoperability of Smart Sensors in Smart Grids. IEEE Trans. Smart Grid 2022, 13, 555–563. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Endogenously stochastic demand side response participation on transmission system level. In Proceedings of the 2018 IEEE International Energy Conference (ENERGYCON), Limassol, Cyprus, 3–7 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. A new class of planning models for option valuation of storage technologies under decision-dependent innovation uncertainty. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Carmona, R.; Ludkovski, M. Valuation of energy storage: An optimal switching approach. Quant. Financ. 2010, 10, 359–374. [Google Scholar] [CrossRef]
- De Sisternes, F.J.; Jenkins, J.D.; Botterud, A. The value of energy storage in decarbonizing the electricity sector. Appl. Energy 2016, 175, 368–379. [Google Scholar] [CrossRef]
- Denholm, P.; Jorgenson, J.; Hummon, M.; Jenkin, T. Value of Energy Storage for Grid Applications; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Locatelli, G.; Invernizzi, D.C.; Mancini, M. Investment and risk appraisal in energy storage systems: A real options approach. Energy 2016, 104, 114–131. [Google Scholar] [CrossRef]
- Bakke, I.; Fleten, S.E.; Hagfors, L.I.; Hagspiel, V. Investment in electric energy storage under uncertainty: A real options approach. Comput. Manag. Sci. 2016, 13, 483–500. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, J.; Xiao, Z.; Yan, G.; Dong, L.; Wang, M.; Yang, H. Power Source Flexibility Margin Quantification Method for Multi-Energy Power Systems Based on Blind Number Theory. CSEE J. Power Energy Syst. 2023, 9, 2321–2331. [Google Scholar] [CrossRef]
- Giannelos, S. Option Valuation of Smart Grid Technology Projects Under Endogenous and Exogenous Uncertainty. Doctoral Dissertation, Imperial College London, London, UK, 2016. [Google Scholar]
- Giannelos, S.; Papadaskalopoulos, D.; Konstantinides, C.V.; Strbac, G. Report on Market Barriers for Deployment of UPGRID Innovative Concepts (Technical Report); UPGRID Project; Schneider Electric: Rueil-Malmaison, France, 2017. [Google Scholar]
- Pan, C.; Shao, C.; Hu, B.; Xie, K.; Li, C.; Ding, J. Modeling the Reserve Capacity of Wind Power and the Inherent Decision-Dependent Uncertainty in the Power System Economic Dispatch. IEEE Trans. Power Syst. 2023, 38, 4404–4417. [Google Scholar] [CrossRef]
- Giannelos, S.; Bellizio, F.; Strbac, G.; Zhang, T. Machine learning approaches for predictions of CO2 emissions in the building sector. Electr. Power Syst. Res. 2024, 235, 110735. [Google Scholar] [CrossRef]
- Borozan, S.; Giannelos, S.; Falugi, P.; Moreira, A.; Strbac, G. Machine learning-enhanced Benders decomposition approach for the multi-stage stochastic transmission expansion planning problem. Electr. Power Syst. Res. 2024, 237, 110985. [Google Scholar] [CrossRef]
- Giannelos, S.; Moreira, A.; Papadaskalopoulos, D.; Borozan, S.; Pudjianto, D.; Konstantelos, I.; Sun, M.; Strbac, G. A Machine Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector. Energies 2023, 16, 2915. [Google Scholar] [CrossRef]
- Giannelos, S. Reinforcement Learning in Energy Finance: A Comprehensive Review. Energies 2025, 18, 2712. [Google Scholar] [CrossRef]
- Giannelos, S.; Zhang, X.; Zhang, T.; Strbac, G. Multi-Objective Optimization for Pareto Frontier Sensitivity Analysis in Power Systems. Sustainability 2024, 16, 5854. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G. A Backwards Induction Framework for Quantifying the Option Value of Smart Charging of Electric Vehicles and the Risk of Stranded Assets under Uncertainty. Energies 2022, 15, 3334. [Google Scholar] [CrossRef]
- Giannelos, S.; Pudjianto, D.; Zhang, T.; Strbac, G. Energy Hub Operation Under Uncertainty: Monte Carlo Risk Assessment Using Gaussian and KDE-Based Data. Energies 2025, 18, 1712. [Google Scholar] [CrossRef]
- Amann, G.; Escobedo Bermúdez, V.R.; Boskov-Kovacs, E.; Gallego Amores, S.; Giannelos, S.; Iliceto, A.; Ilo, A.; Chavarro, J.R.; Samovich, N.; Schmitt, L.; et al. E-mobility Deployment and Impact on Grids: Impact of EV and Charging Infrastructure on European T&D Grids: Innovation Needs; Amores, S.G., Ed.; MJ-09-22-246-EN-N; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Giannelos, S.; Borozan, S.; Strbac, G.; Zhang, T.; Kong, W. Vehicle-to-Grid: Quantification of its contribution to security of supply through the F-Factor methodology. Sustain. Energy Res. 2024, 11, 32. [Google Scholar] [CrossRef]
- Giannelos, S.; Djapic, P.; Pudjianto, D.; Strbac, G. Quantification of the Energy Storage Contribution to Security of Supply through the F-Factor Methodology. Energies 2020, 13, 826. [Google Scholar] [CrossRef]
- Khalil, M.; Sheikh, S.A. Advancing Green Energy Integration in Power Systems for Enhanced Sustainability: A Review. IEEE Access 2024, 12, 151669–151692. [Google Scholar] [CrossRef]
- Giannelos, S.; Papadaskalopoulos, D.; Konstantinides, C.V.; Strbac, G. Report on the Incentive Framework for Facilitating Investments in UPGRID Innovative Concepts (Technical Report); UPGRID Project; Schneider Electric: Rueil-Malmaison, France, 2017. [Google Scholar]
- Khan, A.A.; Minai, A.F.; Godi, R.K.; Sharma, V.S.; Malik, H.; Afthanorhan, A. Optimal Sizing, Techno-Economic Feasibility and Reliability Analysis of Hybrid Renewable Energy System: A Systematic Review of Energy Storage Systems’ Integration. IEEE Access 2025, 13, 59198–59226. [Google Scholar] [CrossRef]
- Long, X.; Li, Y.; Li, Y.; Ge, L.; Gooi, H.B.; Chung, C.; Zeng, Z. Collaborative Response of Data Center Coupled With Hydrogen Storage System for Renewable Energy Absorption. IEEE Trans. Sustain. Energy 2024, 15, 986–1000. [Google Scholar] [CrossRef]
- O’Malley, C.; de Mars, P.; Badesa, L.; Strbac, G. Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation. Appl. Energy 2023, 349, 121659. [Google Scholar] [CrossRef]
- Giannelos, S.; Pudjianto, D.; Strbac, G. Smart home economic operation under uncertainty: Comparing Monte Carlo and stochastic optimization using Gaussian and KDE-based data. Oper. Res. Perspect. 2025, 15, 100348. [Google Scholar] [CrossRef]
- Giannelos, S.; Konstantelos, I.; Strbac, G. Optimal supply chain design using machine learning, risk assessment and optimisation applied to coal distribution. EURO J. Decis. Process. 2025, 13, 100062. [Google Scholar] [CrossRef]
Application Domain | Specific Applications | AI Techniques Used | References |
---|---|---|---|
Battery Cell-Level | SoC estimation, SoE estimation | LSTM, SVM, neural networks, physics-informed models | [7,8,9,10,11,12,13] |
SoH estimation, RUL prediction, degradation modeling | Explainable AI, deep learning, ensemble methods | [14,15,16,17] | |
Battery System-Level | Failure prediction, anomaly detection | ML ensemble methods, neural networks | [6,18,19,20,21] |
Thermal runaway detection, cell imbalance | Pattern recognition, big data analytics | [22,23,24] | |
Temperature prediction, thermal control | ML/DL models, ANN, SVM | [25,26,27] | |
Energy Storage Operation | Optimal charging strategies, cycle optimization | Reinforcement learning, deep RL, dynamic programming | [5,28,29,30,31] |
Real-time control, multi-objective optimization | Model predictive control, deep learning | [30,32,33,34,35] | |
Grid Integration | Demand prediction, consumption patterns | LSTM, GPR, CNN–LSTM hybrid | [31,36,37,38,39,40,41] |
Optimal capacity, location optimization | Genetic algorithms, PSO, whale optimization | [31,42,43,44,45,46] | |
System-Level applications | Grid stability, frequency regulation | DLR, real-time optimization | [47,48,49,50,51] |
Distributed control, renewable integration | Multi-agent RL, federated learning | [52,53,54,55,56,57] | |
Wind/solar forecasting, variability management | ML, neural networks, time series | [58,59,60] |
AI Technique | Primary Objectives | System Application Point | Key Advantages | References |
---|---|---|---|---|
Long Short-Term Memory (LSTM) | SoC estimation, load forecasting, time-series prediction | Cell-level BMS, grid-level BMS | Captures long-term dependencies, handles sequential data | [7,11,31,36,37,38,39] |
Convolutional Neural Networks (CNN) | Pattern recognition in battery data, fault detection | Battery pack monitoring | Spatial feature extraction, noise robustness | [39,61] |
Support Vector Machines (SVM) | SoC/SoH estimation, classification tasks | Cell-level BMS | High accuracy with limited data, nonlinear mapping | [6,8,9,10] |
Random Forest/Ensemble Methods | Predictive maintenance, SoH estimation | System-level diagnostics | Handles heterogeneous data, feature importance ranking | [6,18,19] |
Reinforcement Learning (RL) | Charging optimization, energy arbitrage | Charging controllers, grid interface | Adaptive to changing conditions, multi-objective optimization | [5,28,29,32,47,62] |
Deep Reinforcement Learning (DRL) | Grid management, microgrid control | Grid-scale EMS | Complex decision making, real-time adaptation | [47,52] |
Genetic Algorithms (GA) | System sizing, placement optimization | Planning and design phase | Global optimization, discrete variables | [45,53] |
Particle Swarm Optimization (PSO) | Multi-objective optimization, parameter tuning | System design, control optimization | Fast convergence, parallel search | [36,43] |
Artificial Neural Networks (ANN) | General prediction tasks, thermal modeling | Multiple levels | Universal approximation, flexibility | [25,26,31] |
Explainable AI (Ex-AI) | SoH monitoring, safety-critical decisions | BMS, safety systems | Interpretability, trust building | [14] |
Federated Learning | Distributed system optimization, privacy-preserving learning | Fleet management, distributed storage | Data privacy, collaborative learning | [28,57] |
Physics-Informed Neural Networks | Model-based prediction, hybrid modelling | Advanced BMS | Incorporates domain knowledge, better generalization | [12] |
Architecture | Computational Efficiency | Memory Requirements | Training Speed | Long-Term Dependencies | Real-Time Performance | Typical Applications in Energy Storage |
---|---|---|---|---|---|---|
LSTM | Moderate | High | Slow | Excellent | Moderate | SOC/SOH estimation, long-term forecasting |
GRU | High | Moderate | Moderate | Good | Good | Real-time battery monitoring, short-term prediction |
Stacked RNN | Low | Moderate | Slow | Poor | Poor | Basic time series analysis |
TCN | Very High | Low | Fast | Very Good | Excellent | High-frequency data analysis, edge deployment |
Application Domain | Rank | Method | Performance Evidence | References |
---|---|---|---|---|
SoC/SoH Estimation | 1 | LSTM | MAE 0.1, RMSE 0.12 | [11] |
2 | SVM | High accuracy with limited data | [8,9,10,13] | |
3 | Physics-Informed Neural Networks | Improved generalization | [12] | |
Grid-Scale Optimization | 1 | Distributed Reinforcement Learning | 40% disruption reduction, 12.2% cost reduction | [47] |
2 | Multi-agent Reinforcement Learning, Federated Learning | Distributed control capabilities | [52,53,54,55,56,57] | |
3 | Model Predictive Control | Established baseline | [30,32,33,34,35] | |
System Sizing and Placement | 1 | MOPSO | 22.8% power loss reduction, 71% voltage fluctuation reduction | [43] |
2 | Whale Optimization | Superior to PSO and Firefly | [44] | |
3 | Genetic Algorithms | Proven effectiveness | [45] | |
Load Forecasting | 1 | LSTM | Dominant in the literature | [31,37,38,39] |
2 | CNN-LSTM Hybrid | 3.4% RMSE reduction | [39] | |
3 | Gaussian Process Regression | Handles uncertainty well | [37] | |
Predictive Maintenance | 1 | Random Forest/Ensemble | Feature importance capability | [6,18,19] |
2 | Neural Networks | General effectiveness | [6,20,21] | |
3 | Explainable AI | Trust and interpretability | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Strbac, G. Artificial Intelligence Applications for Energy Storage: A Comprehensive Review. Energies 2025, 18, 4718. https://doi.org/10.3390/en18174718
Zhang T, Strbac G. Artificial Intelligence Applications for Energy Storage: A Comprehensive Review. Energies. 2025; 18(17):4718. https://doi.org/10.3390/en18174718
Chicago/Turabian StyleZhang, Tai, and Goran Strbac. 2025. "Artificial Intelligence Applications for Energy Storage: A Comprehensive Review" Energies 18, no. 17: 4718. https://doi.org/10.3390/en18174718
APA StyleZhang, T., & Strbac, G. (2025). Artificial Intelligence Applications for Energy Storage: A Comprehensive Review. Energies, 18(17), 4718. https://doi.org/10.3390/en18174718