The Energy Hunger of AI: Large Language Models as Challenges and Enablers for Sustainable Energy
1. Introduction
2. Energy Demand from AI
3. Energy Supply for AI
4. AI for Energy Optimization
5. AI, Energy Efficiency and Security
6. Conclusions and Outlook
- -
- Demand side: Development of greener, more efficient AI models and architectures;
- -
- Supply side: Decarbonized and secure energy provision for AI infrastructures, combining renewables, storage, and nuclear options;
- -
- System side: Application of AI, including LLMs, to enhance energy efficiency, security, and resilience.
Funding
Conflicts of Interest
References
- Franki, V.; Majnarić, D.; Višković, A. A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector. 2023. Energies 2023, 16, 1077. [Google Scholar] [CrossRef]
- Chen, M.; Cui, H.; Blaabjerg, F.; Lorenz, L.; Hellinger, R.; Gray, T.; Fink, O.; Hermanns, K. Power for AI and AI for Power: The Infinite Entanglement Between Artificial Intelligence and Power Electronics Systems. IEEE Power Electron. Mag. 2025, 12, 37–43. [Google Scholar] [CrossRef]
- Han, S.; Wang, M.; Zhang, J.; Li, D.; Duan, J. A Review of Large Language Models: Fundamental Architectures, Key Technological Evolutions, Interdisciplinary Technologies Integration, Optimization and Compression Techniques, Applications, and Challenges. Electronics 2024, 13, 5040. [Google Scholar] [CrossRef]
- Raiaan, M.A.K.; Mukta, S.H.; Fatema, K.; Fahad, N.M.; Sakib, S.; Mim, M.M.J.; Ahmad, J.; Ali, M.E.; Azam, S. A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access 2024, 12, 26839–26874. [Google Scholar] [CrossRef]
- Li, J.; Herdem, M.S.; Nathwani, J.; Wen, J.Z. Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management. Energy AI 2023, 11, 100208. [Google Scholar] [CrossRef]
- Kankanhalli, A. Peer Review in the Age of Generative AI. J. Assoc. Inf. Syst. 2024, 25, 76–84. [Google Scholar] [CrossRef]
- Fang, X.; Che, S.; Mao, M.; Zhang, H.; Zhao, M.; Zhao, X. Bias of AI-generated content: An examination of news produced by large language models. Sci. Rep. 2024, 14, 5224. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, B. Building a Smart and Green AI. Electrochem. Soc. Interface 2023, 32, 47–48. [Google Scholar] [CrossRef]
- Patterson, D.; Gonzalez, J.; Le, Q.V.; Liang, C.; Munguia, L.-M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. Carbon Emissions and Large Neural Network Training. arXiv 2021, arXiv:2104.10350. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Data Centres and Data Transmission Networks; IEA: Paris, France, 2023; Available online: https://www.iea.org/energy-system/buildings/data-centres-and-data-transmission-networks (accessed on 22 August 2025).
- International Energy Agency (IEA). AI Is Set to Drive Surging Electricity Demand from Data Centres While Offering the Potential to Transform How the Energy Sector Works; News Release, 10 April 2025. Available online: https://www.iea.org/news/ai-is-set-to-drive-surging-electricity-demand-from-data-centres-while-offering-the-potential-to-transform-how-the-energy-sector-works (accessed on 22 August 2025).
- The Green Grid. PUE™: A Comprehensive Examination of the Metric; The Green Grid: Washington, DC, USA, 2014; Available online: https://www.thegreengrid.org/en/resources/library-and-tools/20-PUE%3A-A-Comprehensive-Examination-of-the-Metric (accessed on 22 August 2025).
- The Green Grid. WP#35—Water Usage Effectiveness (WUE): A Green Grid Data Center Sustainability Metric; The Green Grid: Washington, DC, USA, 2011; Available online: https://www.thegreengrid.org/en/resources/library-and-tools/238-WP%2335---Water-Usage-Effectiveness-%28WUE%29%3A-A-Green-Grid-Data-Center-Sustainability-Metric (accessed on 22 August 2025).
- Li, P.; Yang, J.; Islam, M.A.; Ren, S. Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models. arXiv 2023, arXiv:2304.03271. [Google Scholar] [CrossRef]
- Hu, E.J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang, L.; Wang, W.; Chen, W. LoRA: Low-Rank Adaptation of Large Language Models. arXiv 2021, arXiv:2106.09685. [Google Scholar] [CrossRef]
- U.S. Department of Energy (DOE); National Renewable Energy Laboratory (NREL). Best Practices Guide for Energy-Efficient Data Center Design; DOE: Washington, DC, USA, 2024. Available online: https://www.energy.gov/sites/default/files/2024-07/best-practice-guide-data-center-design_0.pdf (accessed on 22 August 2025).
- ASHRAE TC 9.9. In Thermal Guidelines for Data Processing Environments, 5th ed.; ASHRAE: Atlanta, GA, USA, 2021; Available online: https://www.ashrae.org/file%20library/technical%20resources/bookstore/supplemental%20files/therm-gdlns-5th-r-e-refcard.pdf (accessed on 22 August 2025).
- European Commission, Joint Research Centre (JRC). 2025 Best Practice Guidelines for the EU Code of Conduct on Data Centre Energy Efficiency; Publications Office of the EU: Luxembourg, 2025; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC141521 (accessed on 22 August 2025).
- CIP-002-5.1a; Cyber Security: BES Cyber System Categorization. North American Electric Reliability Corporation (NERC): Atlanta, GA, USA, 2016. Available online: https://www.nerc.com/pa/stand/reliability%20standards/cip-002-5.1a.pdf (accessed on 22 August 2025).
- European Union. Directive (EU) 2022/2555 (NIS 2 Directive) on Measures for a High Common Level of Cybersecurity across the Union; Official Journal of the European Union L 333. 27 December 2022. pp. 80–152. Available online: https://eur-lex.europa.eu/eli/dir/2022/2555/oj/eng (accessed on 22 August 2025).
- ISO/IEC 27001:2022; Information Security Management Systems—Requirements. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/27001 (accessed on 22 August 2025).
- Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938. [Google Scholar] [CrossRef]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.-T.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. arXiv 2020, arXiv:2005.11401. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar] [CrossRef]
- Dettmers, T.; Lewis, M.; Belkada, Y.; Zettlemoyer, L. LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale. arXiv 2022, arXiv:2208.07339. [Google Scholar] [CrossRef]
- Frantar, E.; Ashkboos, S.; Alistarh, D.; Hoefler, T. GPTQ: Accurate Post-Training Quantization for Generative Pretrained Transformers. arXiv 2022, arXiv:2210.17323. [Google Scholar] [CrossRef]
- Fedus, W.; Zoph, B.; Shazeer, N. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. arXiv 2021, arXiv:2101.03961. [Google Scholar] [CrossRef]
- Verdecchia, R.; Sallou, J.; Cruz, L. A systematic review of Green AI. WIREs Data Min. Knowl. Discov. 2023, 13, e1507. [Google Scholar] [CrossRef]
- Bolón-Canedo, V.; Morán-Fernández, L.; Cancela, B.; Alonso-Betanzos, A. A review of green artificial intelligence: Towards a more sustainable future. Neurocomputing 2024, 599, 128096. [Google Scholar] [CrossRef]
- Tang, Y.; Cao, D.; Xiao, J.; Jiang, C.; Huang, Q.; Li, Y.; Chen, Z.; Blaabjerg, F.; Hu, W. AI-aided power electronic converters automatic online real-time efficiency optimization method. Fundam. Res. 2023, 5, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinov, N. The Energy Hunger of AI: Large Language Models as Challenges and Enablers for Sustainable Energy. Energies 2025, 18, 4701. https://doi.org/10.3390/en18174701
Hinov N. The Energy Hunger of AI: Large Language Models as Challenges and Enablers for Sustainable Energy. Energies. 2025; 18(17):4701. https://doi.org/10.3390/en18174701
Chicago/Turabian StyleHinov, Nikolay. 2025. "The Energy Hunger of AI: Large Language Models as Challenges and Enablers for Sustainable Energy" Energies 18, no. 17: 4701. https://doi.org/10.3390/en18174701
APA StyleHinov, N. (2025). The Energy Hunger of AI: Large Language Models as Challenges and Enablers for Sustainable Energy. Energies, 18(17), 4701. https://doi.org/10.3390/en18174701