Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes
Abstract
1. Introduction
2. Materials and Methods
- Creating complex process logic using the Process Flow module, which allows for the definition of decision-making and operational rules, enabling a faithful representation of the temporal and functional relationships occurring in the analyzed system;
- Conducting a detailed assessment of system performance based on automatically generated reports and data summaries, resource utilization statistics, and operation completion times, as well as exporting results to external computing tools for further analysis;
- Simulating logistics processes typical of an industrial environment, including component and material flow management and analysis of internal transport routes.
- Accurately representing the dynamics of production flow, including the supply of work stations with necessary raw materials, components, and equipment, the management of storage buffers, and the analysis of load distribution for work stations and storage points (e.g., intermediate warehouses, storage bays).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaskó, S.; Ruppert, T. The Future of Manufacturing and Industry 4.0. Appl. Sci. 2025, 15, 4655. [Google Scholar] [CrossRef]
- Lombardi, M.; Pascale, F.; Santaniello, D. Internet of Things: A General Overview between Architectures, Protocols and Applications. Information 2021, 12, 87. [Google Scholar] [CrossRef]
- Mansour, M.; Gamal, A.; Ahmed, A.I.; Said, L.A.; Elbaz, A.; Herencsar, N.; Soltan, A. Internet of Things: A Comprehensive Overview on Protocols, Architectures, Technologies, Simulation Tools, and Future Directions. Energies 2023, 16, 3465. [Google Scholar] [CrossRef]
- Amin, F.; Abbasi, R.; Mateen, A.; Ali Abid, M.; Khan, S. A Step toward Next-Generation Advancements in the Internet of Things Technologies. Sensors 2022, 22, 8072. [Google Scholar] [CrossRef]
- Dhiman, R.; Miteff, S.; Wang, Y.; Ma, S.-C.; Amirikas, R.; Fabian, B. Artificial Intelligence and Sustainability—A Review. Analytics 2024, 3, 140–164. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Hornsey, R.L.; Hibbard, P.B. Current Perceptions of Virtual Reality Technology. Appl. Sci. 2024, 14, 4222. [Google Scholar] [CrossRef]
- Strzałkowski, P.; Bęś, P.; Szóstak, M.; Napiórkowski, M. Application of Virtual Reality (VR) Technology in Mining and Civil Engineering. Sustainability 2024, 16, 2239. [Google Scholar] [CrossRef]
- Arena, F.; Collotta, M.; Pau, G.; Termine, F. An Overview of Augmented Reality. Computers 2022, 11, 28. [Google Scholar] [CrossRef]
- Emmert-Streib, F. Defining a Digital Twin: A Data Science-Based Unification. Mach. Learn. Knowl. Extr. 2023, 5, 1036–1054. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.-S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Cyfrowy bliźniak: Od początku do przyszłości. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Kampa, A. Modeling and Simulation of a Digital Twin of a Production System for Industry 4.0 with Work-in-Process Synchronization. Appl. Sci. 2023, 13, 12261. [Google Scholar] [CrossRef]
- Christ, L.; Milloch, E.; Boshoff, M.; Hypki, A.; Kuhlenkötter, B. Implementation of Digital Twin and Real Production System to Address Actual and Future Challenges in Assembly Technology. Automation 2023, 4, 345–358. [Google Scholar] [CrossRef]
- Florescu, A. Cyfrowy bliźniak dla elastycznych systemów produkcyjnych i optymalizacji poprzez symulację: Studium przypadku. Machines 2024, 12, 785. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, C.; Kevin, I.; Wang, K.; Huang, H.; Xu, X. Inteligentna produkcja oparta na cyfrowym bliźniaku: Konotacje, model odniesienia, zastosowania i problemy badawcze. Robot. Comput. Integr. Manuf. 2020, 61, 101837. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2020, 58, 346–361. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Cyfrowy bliźniak w przemyśle: Stan techniki. IEEE Trans. Ind. Inf. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Cyfrowy bliźniak do konserwacji: Przegląd literatury. Comput. Ind. 2020, 123, 103–316. [Google Scholar]
- Rigó, L.; Fabianová, J.; Lokšík, M.; Mikušová, N. Utilising Digital Twins to Bolster the Sustainability of Logistics Processes in Industry 4.0. Sustainability 2024, 16, 2575. [Google Scholar] [CrossRef]
- Bandara, L.V.; Buics, L. Digital Twins in Sustainable Supply Chains: A Comprehensive Review of Current Applications and Enablers for Successful Adoption. Eng. Proc. 2024, 79, 64. [Google Scholar] [CrossRef]
- Roman, E.-A.; Stere, A.-S.; Roșca, E.; Radu, A.-V.; Codroiu, D.; Anamaria, I. State of the Art of Digital Twins in Improving Supply Chain Resilience. Logistics 2025, 9, 22. [Google Scholar] [CrossRef]
- Resman, M.; Debevec, M.; Herakovič, N. Using Digital Twin Technology to Improve the Organization of the Supply Chain in Piece Type of Production. Systems 2025, 13, 505. [Google Scholar] [CrossRef]
- Werbińska-Wojciechowska, S.; Giel, R.; Winiarska, K. Digital Twin Approach for Operation and Maintenance of Transportation System—Systematic Review. Sensors 2024, 24, 6069. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Sorooshian, S.; Okfalisa, O. Digital Twins Driven Supply Chain Visibility within Logistics: A New Paradigm for Future Logistics. Appl. Syst. Innov. 2021, 4, 29. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, H.; Chang, Q.; Mao, Q. A Comprehensive Review of Digital Twins Technology in Agriculture. Agriculture 2025, 15, 903. [Google Scholar] [CrossRef]
- Wang, L. Digital Twins in Agriculture: A Review of Recent Progress and Open Issues. Electronics 2024, 13, 2209. [Google Scholar] [CrossRef]
- Catala-Roman, P.; Navarro, E.A.; Segura-Garcia, J.; Garcia-Pineda, M. Harnessing Digital Twins for Agriculture 5.0: A Comparative Analysis of 3D Point Cloud Tools. Appl. Sci. 2024, 14, 1709. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, C.; Zhang, T.; Zhang, Z.; Doan, D.T. Digital Twins in Construction: Architecture, Applications, Trends and Challenges. Buildings 2024, 14, 2616. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.-K.; Son, M.-J.; Yu, C.; Lee, J.; Kim, S. Unlocking the Potential of Digital Twins in Construction: A Systematic and Quantitative Review Using Text Mining. Buildings 2024, 14, 702. [Google Scholar] [CrossRef]
- Barosz, P.; Gołda, G.; Kampa, A. Efficiency Analysis of Manufacturing Line with Industrial Robots and Human Operators. Appl. Sci. 2020, 10, 2862. [Google Scholar] [CrossRef]
- Sarvan Kumar, U.; Shivraj Narayan, Y. Productivity improvement in a windows manufacturing layout using FlexSim simulation software. Int. J. Res. Advent Technol. 2015, 3, 86–90. [Google Scholar]
- Kikolski, M. Identification of production bottlenecks with the use of Plant Simulation Software. Econ. Manag. 2016, 8, 103–112. [Google Scholar] [CrossRef]
- Gola, A.; Wiechetek, Ł. Modelling and simulation production flow in job-shop production system with Enterprise Dynamics software. Appl. Comput. Sci. 2017, 13, 87–97. [Google Scholar] [CrossRef]
- Pekarcikova, M.; Trebuna, P.; Kliment, M.; Dic, M. Solution of Bottlenecks in the Logistics Flow by Applying the Kanban Module in the Tecnomatix Plant Simulation Software. Sustainability 2021, 13, 7989. [Google Scholar] [CrossRef]
- Fedorko, G.; Molnár, V.; Strohmandl, J.; Horváthová, P.; Strnad, D.; Cech, V. Research on Using the Tecnomatix Plant Simulation for Simulation and Visualization of Traffic Processes at the Traffic Node. Appl. Sci. 2022, 12, 12131. [Google Scholar] [CrossRef]
- Galić, M.; Thronicke, R.; Schreck, B.M.; Feine, I.; Bargstädt, H. Process modeling and scenario simulation in construction using enterprise dynamics simulation software. Electron. J. Fac. Civ. Eng. Osijek-E-GFOS 2015, 6, 22–29. [Google Scholar] [CrossRef]
- Wang, Y.R.; Chen, A.N. Production logistics simulation and optimization of industrial enterprise based on FlexSim. Int. J. Simul. Model. 2016, 15, 732–741. [Google Scholar] [CrossRef]
- Kamrani, M.; Abadi, S.M.H.E.; Golroudbary, S.R. Traffic simulation of two adjacent unsignalized T-junctions during rush hours using Arena software. Simul. Model. Pract. Theory 2014, 49, 167–179. [Google Scholar] [CrossRef]
- Pawlak, S.; Małysa, T.; Fornalczyk, A. Analysis of Production Process Parameters Using Computer Simulation at the Planning Stage. Appl. Sci. 2024, 14, 10863. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, Y.; Li, W.; Li, X.; Wu, F. Refined Simulation Method for Computer-Aided Process Planning Based on Digital Twin Technology. Micromachines 2022, 13, 620. [Google Scholar] [CrossRef]
- Jeon, S.-W.; Lee, D.; Oh, S.-C.; Park, K.-T.; Noh, S.-D.; Arinez, J. Design and Implementation of Simulation-Based Scheduling System with Reinforcement Learning for Re-Entrant Production Lines. Machines 2022, 10, 1169. [Google Scholar] [CrossRef]
- Lewicki, W.; Niekurzak, M.; Wróbel, J. Development of a Simulation Model to Improve the Functioning of Production Processes Using the FlexSim Tool. Appl. Sci. 2024, 14, 6957. [Google Scholar] [CrossRef]
- Daroń, M.; Górska, M. Relationships between Selected Quality Tools and Energy Efficiency in Production Processes. Energies 2023, 16, 4901. [Google Scholar] [CrossRef]
- Urban, W. Energy Savings in Production Processes as a Key Component of the Global Energy Problem—The Introduction to the Special Issue of Energies. Energies 2022, 15, 5158. [Google Scholar] [CrossRef]
- Rokicki, Ł.; Parol, M.; Pałka, P.; Kopyt, M. Reducing the Peak Power Demand and Setting the Proper Operating Regimes of Electrical Energy Devices in an Industrial Factory Using a Multi-Agent System—The Solutions of the DIEGO Project. Energies 2025, 18, 2416. [Google Scholar] [CrossRef]
- Zhao, N.; Li, R.; Yang, X. Harmonogramowanie AGV i optymalizacja zużycia energii w zautomatyzowanych terminalach kontenerowych na podstawie algorytmu wyszukiwania zmiennego sąsiedztwa. J. Mar. Sci. Eng. 2025, 13, 647. [Google Scholar] [CrossRef]
- Sperling, M.; Furmans, K. Energy Requirement Modeling for Automated Guided Vehicles Considering Material Flow and Layout Data. Designs 2024, 8, 48. [Google Scholar] [CrossRef]
- Lemos, J.; Gaspar, P.D.; Lima, T.M. Environmental Risk Assessment and Management in Industry 4.0: A Review of Technologies and Trends. Machines 2022, 10, 702. [Google Scholar] [CrossRef]
- Oláh, J.; Aburumman, N.; Popp, J.; Khan, M.A.; Haddad, H.; Kitukutha, N. Impact of Industry 4.0 on Environmental Sustainability. Sustainability 2020, 12, 4674. [Google Scholar] [CrossRef]
- Zoubek, M.; Poor, P.; Broum, T.; Basl, J.; Simon, M. Industry 4.0 Maturity Model Assessing Environmental Attributes of Manufacturing Company. Appl. Sci. 2021, 11, 5151. [Google Scholar] [CrossRef]
- Martín-Gómez, A.M.; Agote-Garrido, A.; Lama-Ruiz, J.R. A Framework for Sustainable Manufacturing: Integrating Industry 4.0 Technologies with Industry 5.0 Values. Sustainability 2024, 16, 1364. [Google Scholar] [CrossRef]
Author/Authors/Year | Research Area | Software Used | Title |
---|---|---|---|
Barosz, P.; Gołda, G.; Kampa, A. (2020) [31] | Production | FlexSim software | Analysis of the production flow problem and assessment of productivity on the production line. |
Sravan Kumar, U.; Shivraj Narayan, Y. (2015) [32] | FlexSim software | Identification of bottlenecks and proposal of remedial actions determined using statistical tools. | |
Kikolski, M. (2016) [33] | Plant Simulation software | Identification of bottlenecks in logistics and warehousing processes in terms of their reduction. | |
Gola, A.; Wichetek, Ł. (2017) [34] | Enterprise Dynamics software | Modeling and simulation of the production process using CNC machines. | |
Pekarcikova, M.; Trebuna, P.; Kliment, M.; Dic, M. (2021) [35] | Plant Simulation software | Identification of bottlenecks in view of their reduction in the production process. | |
Fedorko, G.; Molnár, V.; Strohmandl, J.; Horváthová, P.; Strnad, D.; Cech, V. (2022) [36] | Logistics | Plant Simulation software | Micro-simulation of traffic in the fields of production logistics and city logistics. |
Galić, M.; Thronicke, R.; Schreck, B.M.; Feine, I.; Bargstädt, H (2015) [37] | Enterprise Dynamics software | Reduction in costs of implemented logistics processes. | |
Wang, Y.; Chen, A.N. (2016) [38] | FlexSim software | Simulation of the assembly system and production logistics of the workshop. | |
Kamrani, M.; Abadi, S.M.H.E.; Golroudbary, S.R. (2014) [39] | ARENA software | Simulation of traffic at intersections during rush hours. |
Operation Number | Workstation | Unit Time [s] |
---|---|---|
10 | Processor 1 | 150 |
20 | Processor 2 | 320 |
30 | Processor 3 | 120 |
40 | Processor 4 | 430 |
50 | Processor 5 | 140 |
60 | Processor 6 | 500 |
70 | Processor 7 | 95 |
Parameter | Value | Unit | Notes |
---|---|---|---|
Type of guidance system | Magnetic tape | – | Movement along a pre-determined route |
Maximum lifting capacity (load capacity) | 300 | kg | - |
Maximum speed (without load) | 2 | m/s | - |
Maximum speed (with load) | 2 | m/s | - |
Loading time | 20 | s | Manual or semi-automatic |
Unloading time | 20 | s | Manual or semi-automatic |
Battery capacity | 2400 | Wh | LiFePO4, 48 V × 50 Ah |
Battery capacity (Ah) | 50 | Ah | – |
Nominal voltage | 48 | V | – |
Energy consumption (without load) | 86 | Wh/km | - |
Energy consumption (with load) | 115 | Wh/km | - |
Full battery charging time | 1 | h | - |
Emergency stop system | Yes | – | Mechanical + sensors |
Location system | - | – | Line tracking sensor (no free location) |
Parameter | Description and Justification |
---|---|
Duration of the production process | This parameter is a fundamental indicator of production efficiency. It allows to determine whether the process is being performed as intended. Comparative analysis allows to assess process efficiency. |
Distance traveled by means of transport | It measures the total length of the route traveled by autonomous electric transporters during the process. |
Level of use of means of transport | This indicator reflects the proportion of devices operating time in active, loaded, and unloaded states. It provides information on the efficiency of transporter operation and influences energy consumption assessment. |
The level of utilization of production stations | It determines the degree of involvement of individual workstations during the manufacturing process. It is determined as the ratio of the station’s active work time to the total process duration. |
Parameter | Before Improvements | After Improvements |
---|---|---|
Distance traveled by AGV1 and AGV2 [m] | 93,255 | 69,648 |
Duration of the production process [h] | 21.93 | 18.95 |
Carbon dioxide (CO2) emissions [grams] | 5580 | 4171 |
The level of utilization of production stations [%] | ||
Processor 1 | 23.41 | 30.26 |
Processor 2 | 52.62 | 62.16 |
Processor 3 | 20.90 | 26.00 |
Processor 4 | 66.51 | 57.83 |
Processor 5 | 25.75 | 25.37 |
Processor 6 | 68.98 | 94.33 |
Processor 7 | 13.50 | 18.10 |
Number of AGV 1 and AGV 2 battery charges | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, S.; Saternus, M.; Nowacki, K. Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes. Energies 2025, 18, 4580. https://doi.org/10.3390/en18174580
Pawlak S, Saternus M, Nowacki K. Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes. Energies. 2025; 18(17):4580. https://doi.org/10.3390/en18174580
Chicago/Turabian StylePawlak, Szymon, Mariola Saternus, and Krzysztof Nowacki. 2025. "Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes" Energies 18, no. 17: 4580. https://doi.org/10.3390/en18174580
APA StylePawlak, S., Saternus, M., & Nowacki, K. (2025). Application of Discrete Event Simulation in the Analysis of Electricity Consumption in Logistics Processes. Energies, 18(17), 4580. https://doi.org/10.3390/en18174580