Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,412)

Search Parameters:
Keywords = energy consumption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 618 KiB  
Article
Effect of a Nutritional Education Intervention on Sports Nutrition Knowledge, Dietary Intake, and Body Composition in Female Athletes: A Pilot Study
by Macarena Veloso-Pulgar and Andreu Farran-Codina
Nutrients 2025, 17(15), 2560; https://doi.org/10.3390/nu17152560 - 5 Aug 2025
Abstract
Background/Objectives: Studies have reported that female athletes often exhibit low levels of nutritional knowledge and inadequate dietary intake to meet their nutritional needs. The aim of this study was to evaluate the effect of a nutritional education intervention on nutrition knowledge, dietary intake, [...] Read more.
Background/Objectives: Studies have reported that female athletes often exhibit low levels of nutritional knowledge and inadequate dietary intake to meet their nutritional needs. The aim of this study was to evaluate the effect of a nutritional education intervention on nutrition knowledge, dietary intake, and body composition in female handball players (n = 45; age, 17.6 ± 2.1 years). Methods: A quasi-experimental intervention design was implemented, consisting of a 3-week educational program delivered through six in-person sessions led by a registered dietitian. Nutrition knowledge, dietary intake, adherence to the Mediterranean diet, and anthropometric and body composition measurements were assessed. Results: Nutrition knowledge levels were significantly higher both immediately post-intervention and three months later compared to baseline (p < 0.05, ES > 0.8). A total of 36 participants completed a 3-day dietary record at baseline and at follow-up. Initial assessments revealed insufficient energy (31 kcal/kg/day) and carbohydrate intake (3.0 g/kg/day) and a high intake of total fats (1.4 g/kg/day). During follow-up, a significant decrease in the consumption of foods rich in sugar was observed (p = 0.0272). A total of 82.2% of the players needed to improve their adherence to the Mediterranean diet. No significant changes were found in Mediterranean diet adherence or body composition following the intervention. Conclusions: The nutritional education intervention significantly improved athletes’ nutritional knowledge and significantly decreased their consumption of sugary foods; however, further studies are needed to evaluate its impact on dietary intake and body composition, considering the study’s limitations. Full article
(This article belongs to the Special Issue Food Habits, Nutritional Knowledge, and Nutrition Education)
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

28 pages, 2057 KiB  
Article
Design and Fabrication of a Cost-Effective, Remote-Controlled, Variable-Rate Sprayer Mounted on an Autonomous Tractor, Specifically Integrating Multiple Advanced Technologies for Application in Sugarcane Fields
by Pongpith Tuenpusa, Kiattisak Sangpradit, Mano Suwannakam, Jaturong Langkapin, Alongklod Tanomtong and Grianggai Samseemoung
AgriEngineering 2025, 7(8), 249; https://doi.org/10.3390/agriengineering7080249 - 5 Aug 2025
Abstract
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a [...] Read more.
The integration of a real-time image processing system using multiple webcams with a variable rate spraying system mounted on the back of an unmanned tractor presents an effective solution to the labor shortage in agriculture. This research aims to design and fabricate a low-cost, variable-rate, remote-controlled sprayer specifically for use in sugarcane fields. The primary method involves the modification of a 15-horsepower tractor, which will be equipped with a remote-control system to manage both the driving and steering functions. A foldable remote-controlled spraying arm is installed at the rear of the unmanned tractor. The system operates by using a webcam mounted on the spraying arm to capture high-angle images above the sugarcane canopy. These images are recorded and processed, and the data is relayed to the spraying control system. As a result, chemicals can be sprayed on the sugarcane accurately and efficiently based on the insights gained from image processing. Tests were conducted at various nozzle heights of 0.25 m, 0.5 m, and 0.75 m. The average system efficiency was found to be 85.30% at a pressure of 1 bar, with a chemical spraying rate of 36 L per hour and a working capacity of 0.975 hectares per hour. The energy consumption recorded was 0.161 kWh, while fuel consumption was measured at 6.807 L per hour. In conclusion, the development of the remote-controlled variable rate sprayer mounted on an unmanned tractor enables immediate and precise chemical application through remote control. This results in high-precision spraying and uniform distribution, ultimately leading to cost savings, particularly by allowing for adjustments in nozzle height from a minimum of 0.25 m to a maximum of 0.75 m from the target. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
35 pages, 6795 KiB  
Article
Thermal Analysis of Energy Efficiency Performance and Indoor Comfort in a LEED-Certified Campus Building in the United Arab Emirates
by Khushbu Mankani, Mutasim Nour and Hassam Nasarullah Chaudhry
Energies 2025, 18(15), 4155; https://doi.org/10.3390/en18154155 - 5 Aug 2025
Abstract
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green [...] Read more.
Enhancing the real-world performance of sustainably designed and certified green buildings remains a significant challenge, particularly in hot climates where efforts to improve thermal comfort often conflict with energy efficiency goals. In the United Arab Emirates (UAE), even newly constructed facilities with green building certifications present opportunities for retrofitting and performance optimization. This study investigates the energy and thermal comfort performance of a LEED Gold-certified, mixed-use university campus in Dubai through a calibrated digital twin developed using IES thermal modelling software. The analysis evaluated existing sustainable design strategies alongside three retrofit energy conservation measures (ECMs): (1) improved building envelope U-values, (2) installation of additional daylight sensors, and (3) optimization of fan coil unit efficiency. Simulation results demonstrated that the three ECMs collectively achieved a total reduction of 15% in annual energy consumption. Thermal comfort was assessed using operative temperature distributions, Predicted Mean Vote (PMV), and Predicted Percentage of Dissatisfaction (PPD) metrics. While fan coil optimization yielded the highest energy savings, it led to less favorable comfort outcomes. In contrast, enhancing envelope U-values maintained indoor conditions consistently within ASHRAE-recommended comfort zones. To further support energy reduction and progress toward Net Zero targets, the study also evaluated the integration of a 228.87 kW rooftop solar photovoltaic (PV) system, which offset 8.09% of the campus’s annual energy demand. By applying data-driven thermal modelling to assess retrofit impacts on both energy performance and occupant comfort in a certified green building, this study addresses a critical gap in the literature and offers a replicable framework for advancing building performance in hot climate regions. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

34 pages, 7007 KiB  
Article
Computational Investigation of Hull Vane Effects on Resistance and Propulsive Performance of a Patrol Vessel
by Muhammad Irfan Shahmi bin Abdul Ra’uf, Iwan Mustaffa Kamal, Nor Adlina Othman and Yaseen Adnan Ahmed
J. Mar. Sci. Eng. 2025, 13(8), 1507; https://doi.org/10.3390/jmse13081507 - 5 Aug 2025
Abstract
This study investigates the effect of Hull Vane® on the total resistance and propulsion performance of a patrol vessel using computational fluid dynamics (CFD). Utilizing SHIPFLOW software, multiple simulations were conducted to evaluate how Hull Vane® position and angle of attack [...] Read more.
This study investigates the effect of Hull Vane® on the total resistance and propulsion performance of a patrol vessel using computational fluid dynamics (CFD). Utilizing SHIPFLOW software, multiple simulations were conducted to evaluate how Hull Vane® position and angle of attack influence hydrodynamic performance. A patrol vessel hull form the MAXSURF’s library was selected to investigate resistance and propulsive performance. Nine (9) configurations (named Cases A to I) of the Hull Vane® were examined based on variations in longitudinal position and angle of attack. A grid independence study was conducted to determine the optimal mesh configuration. Validation was performed using the Holtrop–Mennen power prediction method and MAXSURF. According to this study, results indicate that Hull Vane® configurations significantly reduce total resistance and delivered power at higher vessel speeds, with the best improvement in resistance occurring in Case C and in propulsion power in Case B. Propulsive efficiency was maximized in Case E. Furthermore, the study also demonstrates the potential of Hull Vane® as a practical retrofit for enhancing naval vessel performance and reducing energy consumption. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 3220 KiB  
Review
Integrated Technology of CO2 Adsorption and Catalysis
by Mengzhao Li and Rui Wang
Catalysts 2025, 15(8), 745; https://doi.org/10.3390/catal15080745 - 5 Aug 2025
Abstract
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and [...] Read more.
This paper discusses the integrated technology of CO2 adsorption and catalysis, which combines adsorption and catalytic conversion, simplifies the traditional process, reduces energy consumption, and improves efficiency. The traditional carbon capture technology has the problems of high energy consumption, equipment corrosion, and absorbent loss, while the integrated technology realizes the adsorption, conversion, and catalyst regeneration of CO2 in a single reaction system, avoiding complex desorption steps. Through micropore confinement and surface electron transfer mechanism, the technology improves the reactant concentration and mass transfer efficiency, reduces the activation energy, and realizes the low-temperature and high-efficiency conversion of CO2. In terms of materials, MOF-based composites, alkali metal modified oxides, and carbon-based hybrid materials show excellent performance, helping to efficiently adsorb and transform CO2. However, the design and engineering of reactors still face challenges, such as the development of new moving bed reactors. This technology provides a new idea for CO2 capture and resource utilization and has important environmental significance and broad application prospects. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

22 pages, 6187 KiB  
Article
Device Modeling Method for the Entire Process of Energy-Saving Retrofit of a Refrigeration Plant
by Xuanru Xu, Lun Zhang, Jun Chen, Qingbin Lin and Junjie Chen
Energies 2025, 18(15), 4147; https://doi.org/10.3390/en18154147 - 5 Aug 2025
Abstract
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the [...] Read more.
With the increasing awareness of energy consumption issues, there has been a growing emphasis on energy-saving retrofits for central air-conditioning systems that constitute a significant proportion of energy consumption in buildings. Efficient energy utilization can be achieved by optimizing the modeling of the equipment within the chiller plants of central air-conditioning systems. Traditional modeling approaches have been static and have focused on modeling within narrow time frames when a certain amount of equipment operating data has accumulated, thus prioritizing the precision of the model itself while overlooking the fact that energy-saving retrofits are a long-term process. This study proposes a modeling scheme for the equipment within chiller plants throughout the energy-saving retrofit process. Based on the differences in the amount of available operating data for the equipment and the progress of retrofit implementation, the retrofit process was divided into three stages, each employing different modeling techniques and ensuring smooth transitions between the stages. The equipment within the chiller plants is categorized into two types based on the clarity of their operating characteristics, and two modeling schemes are proposed accordingly. Based on the proposed modeling scheme, chillers and chilled-water pumps were selected to represent the two types of equipment. Real operating data from actual retrofit projects was used to model the equipment and evaluate the accuracy of the model predictions. The results indicate that the models established by the proposed modeling scheme exhibit good accuracy at each stage of the retrofit, with the coefficients of variation (CV) remaining below 6.88%. Furthermore, the prediction accuracy improved as the retrofitting process progressed. The modeling scheme performs better on equipment with simpler and clearer operating characteristics, with a CV as low as 0.67% during normal operation stages. This underscores the potential application of the proposed modeling scheme throughout the energy-saving retrofit process and provides a model foundation for the subsequent optimization of the refrigeration system. Full article
Show Figures

Figure 1

33 pages, 7414 KiB  
Article
Carbon Decoupling of the Mining Industry in Mineral-Rich Regions Based on Driving Factors and Multi-Scenario Simulations: A Case Study of Guangxi, China
by Wei Wang, Xiang Liu, Xianghua Liu, Luqing Rong, Li Hao, Qiuzhi He, Fengchu Liao and Han Tang
Processes 2025, 13(8), 2474; https://doi.org/10.3390/pr13082474 - 5 Aug 2025
Abstract
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the [...] Read more.
The mining industry (MI) in mineral-rich regions is pivotal for economic growth but is challenged by significant pollution and emissions. This study examines Guangxi, a representative region in China, in light of the country’s “Dual Carbon” goals. We quantified carbon emissions from the MI from 2005 to 2021, employing the generalized Divisia index method (GDIM) to analyze the factors driving these emissions. Additionally, a system dynamics (SD) model was developed, integrating economic, demographic, energy, environmental, and policy variables to assess decarbonization strategies and the potential for carbon decoupling. The key findings include the following: (1) Carbon accounting analysis reveals a rising emission trend in Guangxi’s MI, predominantly driven by electricity consumption, with the non-ferrous metal mining sector contributing the largest share of total emissions. (2) The primary drivers of carbon emissions were identified as economic scale, population intensity, and energy intensity, with periodic fluctuations in sector-specific drivers necessitating coordinated policy adjustments. (3) Scenario analysis showed that the Emission Reduction Scenario (ERS) is the only approach that achieves a carbon peak before 2030, indicating that it is the most effective decarbonization pathway. (4) Between 2022 and 2035, carbon decoupling from total output value is projected to improve under both the Energy-Saving Scenario (ESS) and ERS, achieving strong decoupling, while the resource extraction shows limited decoupling effects often displaying an expansionary connection. This study aims to enhance the understanding and promote the advancement of green and low-carbon development within the MI in mineral-rich regions. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 2385 KiB  
Article
Assessing Thermal Comfort in Green and Conventional Office Buildings in Hot Climates
by Abdulrahman Haruna Muhammad, Ahmad Taki and Sanober Hassan Khattak
Sustainability 2025, 17(15), 7078; https://doi.org/10.3390/su17157078 - 5 Aug 2025
Abstract
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. [...] Read more.
Green buildings are recognised for their potential to reduce energy consumption, minimise environmental impact, and improve occupants’ well-being, benefits that are especially critical in rapidly urbanising regions. However, questions remain about whether these buildings fully meet occupant comfort expectations while delivering energy efficiency. This is particularly relevant in Africa, where climate conditions and energy infrastructure challenges make sustainable building operation essential. Although interest in sustainable construction has increased, limited research has examined the real-world performance of green buildings in Africa. This study helps address that gap by evaluating indoor thermal comfort in a green-certified office building and two conventional office buildings in Abuja, Nigeria, through post-occupancy evaluation (POE). The Predicted Mean Vote (PMV) and Thermal Sensation Vote (TSV) were used to assess comfort, revealing discrepancies between predicted and actual occupant responses. In the green building, PMV indicated near-neutral conditions (0.28), yet occupants reported a slightly cool sensation (TSV: −1.1). Neutral temperature analysis showed that the TSV-based neutral temperature (26.5 °C) was 2.2 °C higher than the operative temperature (24.3 °C), suggesting overcooling. These findings highlight the importance of incorporating occupant feedback into HVAC control. Aligning cooling setpoints with comfort preferences could improve satisfaction and reduce unnecessary cooling, promoting energy-efficient building operation. Full article
Show Figures

Figure 1

16 pages, 408 KiB  
Article
A Cross-Sectional Study: Association Between Nutritional Quality and Cancer Cachexia, Anthropometric Measurements, and Psychological Symptoms
by Cahit Erkul, Taygun Dayi, Melin Aydan Ahmed, Pinar Saip and Adile Oniz
Nutrients 2025, 17(15), 2551; https://doi.org/10.3390/nu17152551 - 4 Aug 2025
Abstract
Background/Objectives: Cancer is a complex disease that affects patients’ nutritional and psychological status. This study aimed to assess the nutritional status of patients diagnosed with lung and gastrointestinal system cancers and evaluate its association with anthropometric measurements, nutrient intake, and psychological symptoms. [...] Read more.
Background/Objectives: Cancer is a complex disease that affects patients’ nutritional and psychological status. This study aimed to assess the nutritional status of patients diagnosed with lung and gastrointestinal system cancers and evaluate its association with anthropometric measurements, nutrient intake, and psychological symptoms. Methods: This cross-sectional study was conducted with 180 patients with lung and gastrointestinal system cancers. Data were collected face-to-face by a questionnaire that included the Subjective Global Assessment-(SGA), Cachexia Assessment Criteria, 24 h Food Consumption Record, and Symptom Checklist-90-Revised-(SCL-90-R). Some anthropometric measurements were collected. Results: Body Mass Index (BMI) was found to be significantly lower (p < 0.001) in SGA-B (moderately malnourished) and SGA-C (severely malnourished) compared to those in SGA-A (well-nourished). The calf circumference was significantly lower (p = 0.002) in SGA-C compared to those in SGA-A and SGA-B. The mean SGA scores were found to be higher in cachexia-diagnosed participants (p < 0.001). The energy intake of SGA-C was significantly lower than SGA-A and SGA-B (p < 0.001). In addition, the energy intake of SGA-B was lower than SGA-A (p < 0.001). The protein intake of SGA-C was lower than SGA-A and SGA-B (p < 0.001). The protein intake of SGA-B was lower than SGA-A (p < 0.001). Regarding the intake of vitamins A, C, E, B1, and B6 and carotene, folate, potassium, magnesium, phosphorus, iron, and zinc, SGA-B and SGA-C were significantly lower than SGA-A (p < 0.001). Additionally, only phobic anxiety was found to be significantly higher in SGA-B than in SGA-A (p: 0.024). Conclusions: As the level of malnutrition increased, a reduction in some nutrient intake and anthropometric measurements was observed. No significant difference was found in any psychological symptoms except phobic anxiety. With this in mind, it is important that every cancer patient, regardless of the stage of the disease, is referred to a dietitian from the time of diagnosis. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Graphical abstract

22 pages, 4189 KiB  
Article
A Hierarchical Path Planning Framework of Plant Protection UAV Based on the Improved D3QN Algorithm and Remote Sensing Image
by Haitao Fu, Zheng Li, Jian Lu, Weijian Zhang, Yuxuan Feng, Li Zhu, He Liu and Jian Li
Remote Sens. 2025, 17(15), 2704; https://doi.org/10.3390/rs17152704 - 4 Aug 2025
Abstract
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a [...] Read more.
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a Mixture-of-Experts mechanism with a Bi-directional Long Short-Term Memory model. This design enhances the efficiency and robustness of UAV path planning in agricultural environments. Building upon this algorithm, a hierarchical coverage path planning framework is developed. Multi-level task maps are constructed using crop information extracted from Sentinel-2 remote sensing imagery. Additionally, a dynamic energy consumption model and a progressive composite reward function are incorporated to further optimize UAV path planning in complex farmland conditions. Simulation experiments reveal that in the two-level scenario, the MoE-D3QN algorithm achieves a coverage efficiency of 0.8378, representing an improvement of 37.84–63.38% over traditional algorithms and 19.19–63.38% over conventional reinforcement learning methods. The redundancy rate is reduced to 3.23%, which is 38.71–41.94% lower than traditional methods and 4.46–42.77% lower than reinforcement learning counterparts. In the three-level scenario, MoE-D3QN achieves a coverage efficiency of 0.8261, exceeding traditional algorithms by 52.13–71.45% and reinforcement learning approaches by 10.15–50.2%. The redundancy rate is further reduced to 5.26%, which is significantly lower than the 57.89–92.11% observed with traditional methods and the 15.57–18.98% reported for reinforcement learning algorithms. These findings demonstrate that the MoE-D3QN algorithm exhibits high-quality planning performance in complex farmland environments, indicating its strong potential for widespread application in precision agriculture. Full article
Show Figures

Figure 1

23 pages, 715 KiB  
Article
Research on the Development of the New Energy Vehicle Industry in the Context of ASEAN New Energy Policy
by Yalin Mo, Lu Li and Haihong Deng
Sustainability 2025, 17(15), 7073; https://doi.org/10.3390/su17157073 - 4 Aug 2025
Abstract
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth [...] Read more.
The green transformation of traditional energy structures and the development of the new energy industry are crucial drivers of sustainable development in the country. The ASEAN Plan of Action for Energy Cooperation (2016–2025; APAEC [2016–2025]), established in 2016, has significantly promoted the growth of the new energy sector and enhanced energy structures across Association of Southeast Asian Nations (ASEAN). This initiative has also inspired these countries to develop corresponding industrial policies aimed at supporting the new energy vehicle (NEV) industry, resulting in significant growth in this sector within the ASEAN region. This paper analyzes the factors influencing the development of the NEV industry in the context of ASEAN’s new energy policies, drawing empirical insights from data collected across six ASEAN countries from 2013 to 2024. Following the implementation of the APAEC (2016–2025), it was observed that ASEAN countries reached a consensus on energy development and cooperation, collaboratively advancing the NEV industry through regional policies. Furthermore, factors such as national governance, financial development, education levels, and the size of the automotive market positively contribute to the growth of the NEV industry in ASEAN. Conversely, high energy consumption can hinder its progress. Additionally, further research indicates that the APAEC (2016–2025) has exerted a more pronounced impact on countries with robust automotive industry foundations or those prioritizing relevant policies. The findings of this paper offer valuable insights for ASEAN countries in the formulating policies for the NEV industry, optimizing energy structures, and achieving low-carbon energy transition and sustainable development. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 1141 KiB  
Article
Monthly Load Forecasting in a Region Experiencing Demand Growth: A Case Study of Texas
by Jeong-Hee Hong and Geun-Cheol Lee
Energies 2025, 18(15), 4135; https://doi.org/10.3390/en18154135 - 4 Aug 2025
Abstract
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data [...] Read more.
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data centers driven by growing demand for AI. Based on an extensive exploratory data analysis, we identify key characteristics of monthly electricity demand in Texas, including an accelerating upward trend, strong seasonality, and temperature sensitivity. In response, we propose a regression-based forecasting model that incorporates a carefully designed set of input features, including a nonlinear trend, lagged demand variables, a seasonality-adjusted month variable, average temperature of a representative area, and calendar-based proxies for industrial activity. We adopt a rolling forecasting approach, generating 12-month-ahead forecasts for both 2023 and 2024 using monthly data from 2013 onward. Comparative experiments against benchmarks including Holt–Winters, SARIMA, Prophet, RNN, LSTM, Transformer, Random Forest, LightGBM, and XGBoost show that the proposed model achieves superior performance with a mean absolute percentage error of approximately 2%. The results indicate that a well-designed regression approach can effectively outperform even the latest machine learning methods in monthly load forecasting. Full article
Show Figures

Figure 1

33 pages, 8443 KiB  
Article
Model for Planning and Optimization of Train Crew Rosters for Sustainable Railway Transport
by Zdenka Bulková, Juraj Čamaj and Jozef Gašparík
Sustainability 2025, 17(15), 7069; https://doi.org/10.3390/su17157069 - 4 Aug 2025
Abstract
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a [...] Read more.
Efficient planning of train crew rosters is a key factor in ensuring operational reliability and promoting long-term sustainability in railway transport, both economically and socially. This article presents a systematic approach to developing a crew rostering model in passenger rail transport, with a focus on the operational setting of the train crew depot in Česká Třebová, a city in the Czech Republic. The seven-step methodology includes identifying available train shifts, defining scheduling constraints, creating roster variants, and calculating personnel and time requirements for each option. The proposed roster reduced staffing needs by two employees, increased the average shift duration to 9 h and 42 min, and decreased non-productive time by 384 h annually. These improvements enhance sustainability by optimizing human resource use, lowering unnecessary energy consumption, and improving employees’ work–life balance. The model also provides a quantitative assessment of operational feasibility and economic efficiency. Compared to existing rosters, the proposed model offers clear advantages and remains applicable even in settings with limited technological support. The findings show that a well-designed rostering system can contribute not only to cost savings and personnel stabilization, but also to broader objectives in sustainable public transport, supporting resilient and resource-efficient rail operations. Full article
Show Figures

Figure 1

21 pages, 3265 KiB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Back to TopTop