Abstract
To address the challenges of power generation rights trading and profit distribution in the integrated energy system of multi-park combined cooling, heating, and power (CCHP) with new energy grid integration, we constructed a hierarchical game model involving multi-energy system aggregators. By having aggregators price electricity, heat, cold, and carbon costs, the model establishes a hierarchical game framework with the linkage of the four prices (electricity, heat, cold, and carbon), achieving inter-park peer-to-peer (P2P) multi-energy dynamic price matching for the first time. It aims to coordinate distribution network dispatching, renewable energy, energy storage, gas turbine units, demand response, cooling–heating–power coupling, and inter-park P2P multi-energy interaction. With the goal of optimizing the profits of integrated energy aggregators, a hierarchical game mechanism is established, which integrates power generation rights trading models and incentive-based demand response. The upper layer of this mechanism is the profit function of integrated energy aggregators, while the lower layer is the cost function of park microgrid alliances. A hierarchical game mechanism with Two-Level Optimization, integrating the Adaptive Disturbance Quantum Particle Swarm Optimization (ADQPSO) algorithm and the branch and bound method (ADQPSO-Driven Branch and Bound Two-Level Optimization), is used to determine dynamic prices, thereby realizing dynamic matching of energy supply and demand and cross-park collaborative optimal allocation. Under the hierarchical game mechanism, the convergence speed of the ADQPSO-driven branch and bound method is 40% faster than that of traditional methods, and the optimization profit accuracy is improved by 1.59%. Moreover, compared with a single mechanism, the hierarchical game mechanism (Scenario 4) increases profits by 17.17%. This study provides technical support for the efficient operation of new energy grid integration and the achievement of “dual-carbon” goals.