Heteroatom Doping of Transition Metallic Compounds for Water Electrolysis
Abstract
1. Introduction
2. Mechanism of Hydrogen Evolution from Electrolytic Water
3. Heteroatom Doping of Transition Metallic Alloy
Catalyst | Electrolyte | η10 (mV) | Tafel Slope (mV dec−1) | Stability | Heteroatom Elements | REF |
---|---|---|---|---|---|---|
N-Ni | neutral | 64 | 106 | 20 mA cm−2 for 18 h | N | [42] |
B-Ni | alkaline (1.0 M KOH) | 160 | 122 | 10 mA cm−2 for 100 h 100 mA cm−2 for 100 h | B | [54] |
N-P-Ni | alkaline (1.0 M KOH) | 25.8 | 34 | 30 mV for 50 h 1000 cycles | N, P | [46] |
S–CoFe@NC | neutral | 37 | 34 | 62 mV for 50 h | S | [58] |
Amorphous Ni-S-Mn alloy | alkaline (30% KOH) | 92(η200) | 282 mV | 200 mA cm−2 for 100 h | S | [59] |
Ni-Mo-P | alkaline (1.0 M KOH) | 69 | 108.4 | 40 h | P | [52] |
Co-P/FTO (2) | alkaline (1.0 M KOH) | 125 | 54 | 140 mV for 10 h | P | [53] |
P-Mo-N | acid (0.5 M H2SO4) | 105 | 43 | 10,000 CV cycles | P, N | [60] |
Co-Ni-S-P/Graphene | alkaline (1.0 M KOH) | 117 | 85 | 10,000 CV cycles 10 mA cm−2 for 50 h | S, P | [61] |
S-AuPbPt | acid (0.5 M H2SO4) | 12 | 17.7 | 5000 cycles | S | [62] |
Ni3Cu1@NG-NC | alkaline (1.0 M KOH) | 122 | 84.2 | 10, 20, 30, and 40 mA cm−2 for 80 h | N | [57] |
4. Heteroatom Doping of Transition Metal Compounds
4.1. Heteroatom Doping of Transition Metal Phosphide
Catalyst | Electrolyte | η10 (mV) | Tafel Slope (mV dec−1) | Stability | Heteroatom Elements | REF |
---|---|---|---|---|---|---|
B-CoP/CNT | acid (0.5 M H2SO4) | 39 | 50 | 5000 CV cycles 100 h | B | [65] |
alkaline (1.0 M KOH) | 56 | 69 | B | |||
neutral (1.0 M PBS) | 79 | 80 | B | |||
B,V-Ni2P | alkaline (1.0 M KOH) | 148(η100) | 57 | 60 h@100 mA cm−2 1000 CV cycles | B, V | [64] |
3.4 at% S-MoP | acid (0.5 M H2SO4) | 86 | 34 | 30,000 s@10 mA cm−2 | S | [63] |
N-CoP/CC | alkaline (1.0 M KOH) | 39 | 58 | 1000 cycles 30 h | N | [70] |
neutral (1.0 M PBS) | 74 | 69 | ||||
acid (0.5 M H2SO4) | 25 | 49 | ||||
N−Co2P/CC | neutral (1.0 M PBS) | 42 | 68 | 3000 cycles 120,000 s@10 mA cm−2 | N | [71] |
acid (0.5 M H2SO4) | 27 | 45 | ||||
alkaline (1.0 M KOH) | 34 | 51 | ||||
S-CoP NPs | alkaline (1.0 M KOH) | 175 | 77 | / | S | [72] |
S-CoP@NG | alkaline (1.0 M KOH) | 146 | 60 | S | ||
S-CoP@CC | alkaline (1.0 M KOH) | 121 | 57 | 20 h@130 mV | S | |
S-CoP@NF | alkaline (1.0 M KOH) | 109 | 79 | S | ||
MoP@NC-250 | alkaline (1.0 M KOH) | 96 | 53 | 1000 CV cycles | N | [66] |
CoP@BCN-1 | acid (0.5 M H2SO4) | 87 | 46 | 2000 CV cycles | B, N | [67] |
alkaline (1.0 M KOH) | 215 | 52 | ||||
neutral (1.0 M PBS) | 122 | 59 | ||||
Ru1CoP/CDs-1000 | alkaline (1.0 M KOH) | 51 | 73.4 | 2000 cycles | Ru | [69] |
acid (0.5 M H2SO4) | 49 | 51.6 |
4.2. Heteroatom Doping of Transition Metal Sulfide
4.3. Heteroatom Doping of Transition Metal Oxide
5. Conclusions and Outlooks
- Water electrolysis still faces some challenges, such as the high cost of electricity, the low efficiency of the electrolysis process, and the poor stability of electrodes in harsh conditions. In addition, the combination of hydrogen and oxygen in electrolytes will cause a possible explosion risk. When gas crossover occurs, the mixed hydrogen and oxygen may explode in some cases. This concern is especially relevant under high-pressure conditions. Therefore, advanced control systems with high-performance and stable catalysts are necessary, which not only efficiently produce high-purity hydrogen but also manage gas pressure and electrolyte flow.
- In the domain of catalyst design and synthesis, the challenge of regulating the active sites of heteroatom-doped transition metal-based catalysts persists as a significant hurdle. The limitations of mono-doping in meeting the escalating demands necessitate a shift towards more sophisticated strategies. These include multi-atom doping, metal and non-metal co-doping, and the construction of heterogeneous structures, which hold promise in enabling the precise regulation of the catalyst’s architecture. In addition, more efforts are needed to explore straightforward, eco-friendly, and cost-effective synthesis methods, which can produce catalysts with high performance and robust stability, for large-scale applications.
- The exploration of changes in electronic structure and catalytic reaction mechanisms is still insufficient. It is crucial to combine theoretical calculations with characterization techniques to establish more reliable models. These models can provide a solid theoretical foundation for catalyst development, particularly in understanding reaction intermediates and reaction kinetics. Furthermore, they can serve as valuable tools for assisting in the design of next-generation catalysts, thereby advancing hydrogen energy development.
Funding
Conflicts of Interest
References
- Liang, J.; Li, H.; Chen, L.; Ren, M.; Fakayode, O.A.; Han, J.; Zhou, C. Efficient Hydrogen Evolution Reaction Performance Using Lignin-Assisted Chestnut Shell Carbon-Loaded Molybdenum Disulfide. Ind. Crop. Prod. 2023, 193, 116214. [Google Scholar] [CrossRef]
- Yao, S.; Xu, L.; Qin, H.; Ding, X.; Zhao, S.; Ma, Y.; Cui, M.; Lv, Q.; Han, J.; Song, F. Two-Dimensional Titanium Carbide-Supported Ultrafine Non-Noble Bimetallic Nanocatalysts for Remarkable Hydrolytic Evolution from Ammonia Borane. New J. Chem. 2024, 48, 18437–18442. [Google Scholar] [CrossRef]
- Yang, X.; Bulushev, D.A.; Yang, J.; Zhang, Q. New Liquid Chemical Hydrogen Storage Technology. Energies 2022, 15, 6360. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Z.; Xu, L.; Qin, H.; Dong, J.; Lv, Q.; Han, J.; Song, F. Ultrafine Nickel-Rhodium Nanoparticles Anchored on Two-Dimensional Vanadium Carbide for High Performance Hydrous Hydrazine Decomposition at Mild Conditions. J. Colloid Interface Sci. 2024, 669, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and Environmental Perspectives of Biofuel Production from Sugarcane Bagasse: Current Status, Challenges and Future Outlook. Ind. Crop. Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Schlapbach, L. Hydrogen-Fuelled Vehicles. Nature 2009, 460, 809–811. [Google Scholar] [CrossRef]
- Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel 2022, 316, 123317. [Google Scholar] [CrossRef]
- Gong, C.; Meng, X.; Jin, C.; Yang, M.; Liu, J.; Sheng, K.; Pu, Y.; Ragauskas, A.; Ji, G.; Zhang, X. Green Synthesis of Cellulose Formate and Its Efficient Conversion into 5-Hydroxymethylfurfural. Ind. Crop. Prod. 2023, 192, 115985. [Google Scholar] [CrossRef]
- Ball, M.; Wietschel, M. The Future of Hydrogen—Opportunities and Challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, B.; Chen, Q.; Peng, X.; Yang, D.; Qiu, F. Layered Double Hydroxide Functionalized Biomass Carbon Fiber for Highly Efficient and Recyclable Fluoride Adsorption. Appl. Biol. Chem. 2019, 62, 12. [Google Scholar] [CrossRef]
- Qin, H.; Tang, S.; Xu, L.; Li, A.; Lv, Q.; Dong, J.; Liu, L.; Ding, X.; Jiang, N.; Luo, R.; et al. Alkaline Functional Chromium Carbide: Immobilization of Ultrafine Ruthenium Copper Nanoparticles for Efficient Hydrogen Evolution from Ammonia Borane Hydrolysis. J. Colloid Interface Sci. 2025, 697, 137897. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Al-Amin, A.Q.; Ambrose, A.F.; Saidur, R. Hydrogen Fuel and Transport System: A Sustainable and Environmental Future. Int. J. Hydrogen Energy 2016, 41, 1369–1380. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Thomas, I.L. Alternative Energy Technologies. Nature 2001, 414, 332. [Google Scholar] [CrossRef]
- Qin, H.; Tang, S.; Xu, L.; Li, A.; Lv, Q.; Dong, J.; Liu, L.; Ding, X.; Pan, X.; Yang, X.; et al. Alkaline Titanium Carbide (MXene) Engineering Ultrafine Non-Noble Nanocatalysts toward Remarkably Boosting Hydrogen Evolution from Ammonia Borane Hydrolysis. J. Alloys Compd. 2025, 1010, 177644. [Google Scholar] [CrossRef]
- Wan, C.; Li, G.; Wang, J.; Xu, L.; Cheng, D.; Chen, F.; Asakura, Y.; Kang, Y.; Yamauchi, Y. Modulating Electronic Metal-Support Interactions to Boost Visible-Light-Driven Hydrolysis of Ammonia Borane: Nickel-Platinum Nanoparticles Supported on Phosphorus-Doped Titania. Angew. Chem. Int. Ed. 2023, 62, e202305371. [Google Scholar] [CrossRef]
- Tang, S.; Xu, L.; Ding, X.; Lv, Q.; Qin, H.; Li, A.; Yang, X.; Han, J.; Song, F. Electronic Engineering Induced Ultrafine Non-Noble Nanoparticles for High-Performance Hydrogen Evolution from Ammonia Borane Hydrolysis. Fuel 2025, 381, 133424. [Google Scholar] [CrossRef]
- Yin, C.; Qiu, S.; Wang, Y.; Wei, Q.; Peng, Z.; Xia, Y.; Zou, Y.; Xu, F.; Sun, L.; Chu, H. Promoted Hydrogen Storage Properties of MgH2 by Ti3+ Self-Doped Defect-Mediated TiO2. J. Alloys Compd. 2023, 966, 171610. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an Energy Carrier: Prospects and Challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Graetz, J. New Approaches to Hydrogen Storage. Chem. Soc. Rev. 2009, 38, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S.M. Perspective of the Role of Hydrogen in the 21st Century Energy Transition. Energy Convers. Manag. 2022, 251, 114898. [Google Scholar] [CrossRef]
- Collodi, G.; Wheeler, F. Hydrogen production via steam reforming with CO2 capture. Chem. Eng. Trans. 2010, 19, 37–42. [Google Scholar]
- Shchegolkov, A.; Shchegolkov, A.; Zemtsova, N.; Stanishevskiy, Y.; Vetcher, A. Recent Advantages on Waste Management in Hydrogen Industry. Polymers 2022, 14, 4992. [Google Scholar] [CrossRef]
- Cobo, S.; Heidkamp, J.; Jacques, P.-A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S.; et al. A Janus Cobalt-Based Catalytic Material for Electro-Splitting of Water. Nat. Mater. 2012, 11, 802–807. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, Y.; You, B. Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling. Acc. Chem. Res. 2023, 56, 1421–1432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, S.; Xu, L.; Wang, J.; Li, A.; Jing, M.; Yang, X.; Song, F. Encapsulation of Ruthenium Oxide Nanoparticles in Nitrogen-Doped Porous Carbon Polyhedral for pH-Universal Hydrogen Evolution Electrocatalysis. Int. J. Hydrogen Energy 2024, 74, 10–16. [Google Scholar] [CrossRef]
- Ji, Q.; Yu, X.; Chen, L.; Yarley, O.P.N.; Zhou, C. Facile Preparation of Sugarcane Bagasse-Derived Carbon Supported MoS2 Nanosheets for Hydrogen Evolution Reaction. Ind. Crop. Prod. 2021, 172, 114064. [Google Scholar] [CrossRef]
- Shi, Q.; Zhu, C.; Du, D.; Lin, Y. Robust Noble Metal-Based Electrocatalysts for Oxygen Evolution Reaction. Chem. Soc. Rev. 2019, 48, 3181–3192. [Google Scholar] [CrossRef]
- Wen, J.; Tang, S.; Ding, X.; Yin, Y.; Song, F.; Yang, X. In Situ Raman Study of Layered Double Hydroxide Catalysts for Water Oxidation to Hydrogen Evolution: Recent Progress and Future Perspectives. Energies 2024, 17, 5712. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Song, F.; Debow, S.; Zhang, T.; Qian, Y.; Huang-Fu, Z.-C.; Munns, K.; Schmidt, S.; Fisher, H.; Brown, J.B.; Su, Y.; et al. Interface Catalysts of Ni3 Fe1 Layered Double Hydroxide and Titanium Carbide for High-Performance Water Oxidation in Alkaline and Natural Conditions. J. Phys. Chem. Lett. 2023, 14, 5692–5700. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Yu, B.; Xia, B.Y.; You, B. A Pyridinic Nitrogen-Rich Carbon Paper for Hydrazine Oxidation-Hybrid Seawater Electrolysis toward Efficient H2 Generation. Sci. China Mater. 2024, 67, 752–761. [Google Scholar] [CrossRef]
- Zhang, K.; Zou, R. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 2021, 17, 2100129. [Google Scholar] [CrossRef]
- Li, J.; He, L.; Liu, X.; Cheng, X.; Li, G. Electrochemical Hydrogenation with Gaseous Ammonia. Angew. Chem. Int. Ed. 2019, 58, 1759. [Google Scholar] [CrossRef]
- Wen, J.; Tang, S.; Wu, X.; Xu, L.; Xie, Y.; Yin, Y.; Song, F. Unraveling Mechanism of Hydrogen Evolution Reactions in Alkaline media: Recent Advances in In-situ Raman Spectroscopy. Chem. Commun. 2025, 61, 8778–8789. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhu, Y.; Qian, L.; Yin, Y.; Yuan, Z.; Dai, Y.; Zhang, T.; Yang, D.; Qiu, F. Lamellar Ti3C2 MXene Composite Decorated with Platinum-Doped MoS2 Nanosheets as Electrochemical Sensing Functional Platform for Highly Sensitive Analysis of Organophosphorus Pesticides. Food Chem. 2024, 459, 140379. [Google Scholar] [CrossRef]
- Deng, Y.; Lai, W.; Xu, B. A Mini Review on Doped Nickel-Based Electrocatalysts for Hydrogen Evolution Reaction. Energies 2020, 13, 4651. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Haruna, S.A.; Hassan, M.M.; Chen, Q. Recent Advances in Rare Earth Ion-doped Upconversion Nanomaterials: From Design to Their Applications in Food Safety Analysis. Comp. Rev. Food Sci. Food Saf. 2023, 22, 3732–3764. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, X.; Li, Q.; Shi, Y.; Zhai, X.; Xu, Y.; Li, Z.; Huang, X.; Wang, X.; Shi, J.; et al. Copper Nanoclusters @ Nitrogen-Doped Carbon Quantum Dots-Based Ratiometric Fluorescence Probe for Lead (II) Ions Detection in Porphyra. Food Chem. 2020, 320, 126623. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yang, S.; Yang, H.; Gao, S.; Yan, X. Mechanism of Heteroatom-Doped Cu5 Catalysis for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2022, 47, 7802–7812. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, F.; Zhang, Y.; Tian, M.; Lin, H.; Guo, W.; Qu, F. Constructing Heteroatom-Doped Transition-Metal Sulfide Heterostructures for Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2023, 6, 6348–6356. [Google Scholar] [CrossRef]
- Song, F.; Ding, X.; Wan, Y.; Zhang, T.; Yin, G.; Brown, J.B.; Rao, Y. Interface Charge Transfer of Heteroatom Boron Doping Cobalt and Cobalt Nitride for Boosting Water Oxidation. J. Phys. Chem. Lett. 2025, 16, 3535–3543. [Google Scholar] [CrossRef]
- You, B.; Liu, X.; Hu, G.; Gul, S.; Yano, J.; Jiang, D.; Sun, Y. Universal Surface Engineering of Transition Metals for Superior Electrocatalytic Hydrogen Evolution in Neutral Water. J. Am. Chem. Soc. 2017, 139, 12283–12290. [Google Scholar] [CrossRef]
- Abkharaki, A.M.; Ensafi, A.A. Phosphorus Heteroatom Doped in NiMn@CuO/CF as Transition Metal Phosphide Materials for Hybrid Supercapacitor. J. Energy Storage 2024, 98, 112953. [Google Scholar] [CrossRef]
- Li, Q.; Kucukosman, O.K.; Ma, Q.; Ouyang, J.; Kucheryavy, P.; Gu, H.; Long, C.L.; Zhang, Z.; Young, J.; Lockard, J.V.; et al. Enhancement of Electrochemical Nitrogen Reduction Activity and Suppression of Hydrogen Evolution Reaction for Transition Metal Oxide Catalysts: The Role of Proton Intercalation and Heteroatom Doping. ACS Catal. 2024, 14, 8899–8912. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, S.; Zhu, M.; Wang, F.; Yang, K.; Dong, B.; Yao, Q.; Hu, W. Enhancing Water Oxidation Performance of Transition Metal Oxides by Atomically Precise Heteroatom Doping. J. Am. Chem. Soc. 2025, 147, 22806–22817. [Google Scholar] [CrossRef]
- Jin, H.; Liu, X.; Chen, S.; Vasileff, A.; Li, L.; Jiao, Y.; Song, L.; Zheng, Y.; Qiao, S.-Z. Heteroatom-Doped Transition Metal Electrocatalysts for Hydrogen Evolution Reaction. ACS Energy Lett. 2019, 4, 805–810. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angew. Chem. Int. Ed. 2013, 52, 3110–3116. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Qiu, J.; Tang, S.; Lv, Q.; Dong, J.; Jiang, N.; Liu, L.; Wan, Y.; Yang, X.; Han, J.; et al. Engineering Cobalt Coordination Environment with Dual Heteroatom Doping for Boosting Urea-Assisted Hydrogen Evolution. Fuel 2025, 395, 135161. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Feng, X. Support and Interface Effects in Water-Splitting Electrocatalysts. Adv. Mater. 2019, 31, 1808167. [Google Scholar] [CrossRef]
- Quan, L.; Jiang, H.; Mei, G.; Sun, Y.; You, B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem. Rev. 2024, 124, 3694–3812. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X.; Wei, W.; Wang, S.; Ni, B.-J. Recent Advances in Transition Metal-Based Electrocatalysts for Alkaline Hydrogen Evolution. J. Mater. Chem. A 2019, 7, 14971–15005. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, F.; Liu, X.; Wu, N.; Che, S.; Li, Y. Phosphorus Doped Nickel-Molybdenum Aerogel for Efficient Overall Water Splitting. App. Catal. B Environ. 2021, 298, 120494. [Google Scholar] [CrossRef]
- Han, G.-Q.; Li, X.; Liu, Y.-R.; Dong, B.; Hu, W.-H.; Shang, X.; Zhao, X.; Chai, Y.-M.; Liu, Y.-Q.; Liu, C.-G. Controllable Synthesis of Three Dimensional Electrodeposited Co–P Nanosphere Arrays as Efficient Electrocatalysts for Overall Water Splitting. RSC Adv. 2016, 6, 52761–52771. [Google Scholar] [CrossRef]
- Zhang, T.; Song, F.; Qian, Y.; Gao, H.; Shaw, J.; Rao, Y. Elemental Engineering of High-Charge-Density Boron in Nickel as Multifunctional Electrocatalysts for Hydrogen Oxidation and Water Splitting. ACS Appl. Energy Mater. 2021, 4, 5434–5442. [Google Scholar] [CrossRef]
- Muzammil, A.; Haider, R.; Wei, W.; Wan, Y.; Ishaq, M.; Zahid, M.; Yaseen, W.; Yuan, X. Emerging Transition Metal and Carbon Nanomaterial Hybrids as Electrocatalysts for Water Splitting: A Brief Review. Mater. Horiz. 2023, 10, 2764–2799. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, W.; Shi, Z.; Yang, L.; Tang, Y. Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv. Mater. 2019, 31, 1802880. [Google Scholar] [CrossRef]
- Liu, B.; Peng, H.; Cheng, J.; Zhang, K.; Chen, D.; Shen, D.; Wu, S.; Jiao, T.; Kong, X.; Gao, Q.; et al. Nitrogen-Doped Graphene-Encapsulated Nickel–Copper Alloy Nanoflower for Highly Efficient Electrochemical Hydrogen Evolution Reaction. Small 2019, 15, 1901545. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Y.; Zhang, X.; Guo, J. Synergistic Effect between Sulfur and CoFe Alloys Embedded in N-Doped Carbon Nanosheets for Efficient Hydrogen Evolution under Neutral Condition. Chem. Eng. J. 2021, 426, 131922. [Google Scholar] [CrossRef]
- Shan, Z.; Liu, Y.; Chen, Z.; Warrender, G.; Tian, J. Amorphous Ni–S–Mn Alloy as Hydrogen Evolution Reaction Cathode in Alkaline Medium. Int. J. Hydrogen Energy 2008, 33, 28–33. [Google Scholar] [CrossRef]
- Yan, J.; Kong, L.; Ji, Y.; Li, Y.; White, J.; Liu, S.; Han, X.; Lee, S.-T.; Ma, T. Air-Stable Phosphorus-Doped Molybdenum Nitride for Enhanced Electrocatalytic Hydrogen Evolution. Commun. Chem. 2018, 1, 95. [Google Scholar] [CrossRef]
- Song, H.J.; Yoon, H.; Ju, B.; Lee, G.; Kim, D. 3D Architectures of Quaternary Co-Ni-S-P/Graphene Hybrids as Highly Active and Stable Bifunctional Electrocatalysts for Overall Water Splitting. Adv. Energy Mater. 2018, 8, 1802319. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Cai, P.; Wen, Z. An Electrochemically Neutralized Energy-Assisted Low-Cost Acid-Alkaline Electrolyzer for Energy-Saving Electrolysis Hydrogen Generation. J. Mater. Chem. A 2018, 6, 4948–4954. [Google Scholar] [CrossRef]
- Liang, K.; Pakhira, S.; Yang, Z.; Nijamudheen, A.; Ju, L.; Wang, M.; Aguirre-Velez, C.I.; Sterbinsky, G.E.; Du, Y.; Feng, Z.; et al. S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catal. 2019, 9, 651–659. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, S.; Jia, C.; Rong, C.; Su, Z.; Dastafkan, K.; Zhang, Q.; Zhao, C. Cooperative Boron and Vanadium Doping of Nickel Phosphides for Hydrogen Evolution in Alkaline and Anion Exchange Membrane Water/Seawater Electrolyzers. Small 2023, 19, 2208076. [Google Scholar] [CrossRef] [PubMed]
- Cao, E.; Chen, Z.; Wu, H.; Yu, P.; Wang, Y.; Xiao, F.; Chen, S.; Du, S.; Xie, Y.; Wu, Y.; et al. Boron-Induced Electronic-Structure Reformation of CoP Nanoparticles Drives Enhanced pH-Universal Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 4154–4160. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Cao, X.; Wu, H.-H.; Pan, K.; Zhang, Q.; Wu, N.; Liu, X. Template-Free Fabrication of MoP Nanoparticles Encapsulated in N-Doped Hollow Carbon Spheres for Efficient Alkaline Hydrogen Evolution. Chem. Eng. J. 2021, 416, 127677. [Google Scholar] [CrossRef]
- Tabassum, H.; Guo, W.; Meng, W.; Mahmood, A.; Zhao, R.; Wang, Q.; Zou, R. Metal–Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Co-Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution. Adv. Energy Mater. 2017, 7, 1601671. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, T. Strategies for Designing Efficient Electrocatalytic HER Catalysts at the Atomic Scale. Chem. Catal. 2022, 2, 1505–1509. [Google Scholar] [CrossRef]
- Song, H.; Wu, M.; Tang, Z.; Tse, J.S.; Yang, B.; Lu, S. Single Atom Ruthenium-Doped CoP/CDs Nanosheets via Splicing of Carbon-Dots for Robust Hydrogen Production. Angew. Chem. Int. Ed. 2021, 60, 7234–7244. [Google Scholar] [CrossRef]
- Men, Y.; Li, P.; Yang, F.; Cheng, G.; Chen, S.; Luo, W. Nitrogen-Doped CoP as Robust Electrocatalyst for High-Efficiency pH-Universal Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2019, 253, 21–27. [Google Scholar] [CrossRef]
- Men, Y.; Li, P.; Zhou, J.; Cheng, G.; Chen, S.; Luo, W. Tailoring the Electronic Structure of Co2P by N Doping for Boosting Hydrogen Evolution Reaction at All pH Values. ACS Catal. 2019, 9, 3744–3752. [Google Scholar] [CrossRef]
- Anjum, M.A.R.; Okyay, M.S.; Kim, M.; Lee, M.H.; Park, N.; Lee, J.S. Bifunctional Sulfur-Doped Cobalt Phosphide Electrocatalyst Outperforms All-Noble-Metal Electrocatalysts in Alkaline Electrolyzer for Overall Water Splitting. Nano Energy 2018, 53, 286–295. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Song, H.; Zhang, B.; Liu, J.; Shai, X.; Miao, L. Water Dissociation Kinetic-Oriented Design of Nickel Sulfides via Tailored Dual Sites for Efficient Alkaline Hydrogen Evolution. Adv. Funct. Mater. 2021, 31, 2008578. [Google Scholar] [CrossRef]
- Qu, Y.; Yang, M.; Chai, J.; Tang, Z.; Shao, M.; Kwok, C.T.; Yang, M.; Wang, Z.; Chua, D.; Wang, S.; et al. Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 5959–5967. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888. [Google Scholar] [CrossRef]
- Ye, J.; Zang, Y.; Wang, Q.; Zhang, Y.; Sun, D.; Zhang, L.; Wang, G.; Zheng, X.; Zhu, J. Nitrogen Doped FeS2 Nanoparticles for Efficient and Stable Hydrogen Evolution Reaction. J. Energy Chem. 2021, 56, 283–289. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Z.; Dong, L.; Zhao, W.; Jin, Y.; Fang, L.; Hu, B.; Dong, M. Activating MoS2 with Super-High Nitrogen-Doping Concentration as Efficient Catalyst for Hydrogen Evolution Reaction. J. Phys. Chem. C 2019, 123, 10917–10925. [Google Scholar] [CrossRef]
- Huang, C.; Yu, L.; Zhang, W.; Xiao, Q.; Zhou, J.; Zhang, Y.; An, P.; Zhang, J.; Yu, Y. N-Doped Ni-Mo Based Sulfides for High-Efficiency and Stable Hydrogen Evolution Reaction. Appl. Catal. B Environ. 2020, 276, 119137. [Google Scholar] [CrossRef]
- Ding, R.; Wang, M.; Wang, X.; Wang, H.; Wang, L.; Mu, Y.; Lv, B. N-Doped Amorphous MoSx for the Hydrogen Evolution Reaction. Nanoscale 2019, 11, 11217–11226. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Patel, D.M.; Tsang, C.; Zhang, R.; Liu, M.; Hwang, G.S.; Lee, L.Y.S. Facilitated Water Adsorption and Dissociation on Ni/Ni3S2 Nanoparticles Embedded in Porous S-doped Carbon Nanosheet Arrays for Enhanced Hydrogen Evolution. Adv. Mater. Inter. 2021, 8, 2001665. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Wang, X.; Tu, J. N-Doped NiO Nanosheet Arrays as Efficient Electrocatalysts for Hydrogen Evolution Reaction. J. Electron. Mater. 2021, 50, 5072–5080. [Google Scholar] [CrossRef]
- Wang, J.; Xuan, H.; Meng, L.; Yang, J.; Yang, J.; Liang, X.; Li, Y.; Han, P. Facile Synthesis of N, S Co-Doped CoMoO4 Nanosheets as High-Efficiency Electrocatalysts for Hydrogen Evolution Reaction. Ionics 2022, 28, 4685–4695. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Ge, R.; Ren, X.; Ren, J.; Yang, D.; Zhang, L.; Sun, X. Phosphorus-Doped Co3O4 Nanowire Array: A Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Catal. 2018, 8, 2236–2241. [Google Scholar] [CrossRef]
- Sun, T.; Liu, P.; Zhang, Y.; Chen, Z.; Zhang, C.; Guo, X.; Ma, C.; Gao, Y.; Zhang, S. Boosting the Electrochemical Water Splitting on Co3O4 through Surface Decoration of Epitaxial S-Doped CoO Layers. Chem. Eng. J. 2020, 390, 124591. [Google Scholar] [CrossRef]
- Shen, L.; Zhou, X.; Zhang, C.; Yin, H.; Wang, A.; Wang, C. Functional Characterization of Bimetallic CuPd x Nanoparticles in Hydrothermal Conversion of Glycerol to Lactic Acid. J. Food Biochem. 2019, 43, 12931. [Google Scholar] [CrossRef]
- Shen, L.; Lu, B.; Li, Y.; Liu, J.; Huang-fu, Z.; Peng, H.; Ye, J.; Qu, X.; Zhang, J.; Li, G.; et al. Interfacial Structure of Water as a New Descriptor of the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2020, 59, 22397–22402. [Google Scholar] [CrossRef]
- Strmcnik, D.; Lopes, P.P.; Genorio, B.; Stamenkovic, V.R.; Markovic, N.M. Design Principles for Hydrogen Evolution Reaction Catalyst Materials. Nano Energy 2016, 29, 29–36. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Ho, J.C.; Qu, Y. Hydrogen Spillover Phenomenon at the Interface of Metal-Supported Electrocatalysts for Hydrogen Evolution. Acc. Chem. Res. 2024, 57, 895–904. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Precise Tuning in Platinum-Nickel/Nickel Sulfide Interface Nanowires for Synergistic Hydrogen Evolution Catalysis. Nat. Commun. 2017, 8, 14580. [Google Scholar] [CrossRef]
- Choi, J.; Nkhama, A.; Kumar, A.; Mishra, S.R.; Perez, F.; Gupta, R.K. A Facile Preparation of Sulfur Doped Nickel–Iron Nanostructures with Improved HER and Supercapacitor Performance. Int. J. Hydrogen Energy 2022, 47, 7511–7752. [Google Scholar] [CrossRef]
Catalyst | Electrolyte | η10 (mV) | Tafel Slope (mV dec−1) | Stability | Heteroatom Elements | REF |
---|---|---|---|---|---|---|
F-Ni3S4 | alkaline (1.0 M KOH) | 29 | 46.2 | 75 h@200 mA cm−2 | F | [73] |
B-Ni3S4 | alkaline (1.0 M KOH) | 51 | 56.8 | / | B | |
N-Ni3S4 | alkaline (1.0 M KOH) | 54 | 78.6 | V | ||
V-Ni3S2-NW | alkaline (1.0 M KOH) | 68 | 112 | 12 h@91 mV | V | [74] |
O-MoS2 (S180) | acid (0.5 M H2SO4) | 120 | 55 | 3000 CV cycles | O | [75] |
N-FeS2 | alkaline (1.0 M KOH) | 126 | 124 | 20 h@126 mV | N | [76] |
N-MoS2 | acid (0.5 M H2SO4) | 14(0.5) | 77–95 | / | N | [77] |
N-NiMoS | alkaline (1.0 M KOH) | 68 | 86 | 3000 CV cycles 1000 h@100 mV | N | [78] |
N-a-MoSx | acid (0.5 M H2SO4) | 143 | 57 | 1000 CV cycles | N | [79] |
Ni/Ni3S2/SC NSAs | alkaline (1.0 M KOH) | 90 | 81 | 12 h@220 mV | S | [80] |
Catalyst | Electrolyte | η10 (mV) | Tafel Slope (mV dec−1) | Stability | Heteroatom Elements | REF |
---|---|---|---|---|---|---|
N-NiO | alkaline (1.0 M KOH) | 154 | 90 | 10 h@1.089 V | N | [81] |
N, S-CoMoO4/NF400 | alkaline (1.0 M KOH) | 58 | 48.68 | 1000 cycles 16 h@10 mA cm−2 | N, S | [82] |
P-Co3O4/NF | alkaline (1.0 M KOH) | 97 | 60 | 1000 CV cycles | P | [83] |
S-CoO/Co3O4 | alkaline (1.0 M KOH) | 181 | 64 | 10 h@10 mA cm−2 | S | [84] |
S-NiFe-oxide NFs | alkaline (1.0 M KOH) | 177 | 114 | 1000 cycles | S | [90] |
S-NiFe-oxide MPs | alkaline (1.0 M KOH) | 187 | 122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Pan, X.; Wu, X.; Xie, Y.; Yin, Y.; Yang, X. Heteroatom Doping of Transition Metallic Compounds for Water Electrolysis. Energies 2025, 18, 4223. https://doi.org/10.3390/en18164223
Zhang X, Pan X, Wu X, Xie Y, Yin Y, Yang X. Heteroatom Doping of Transition Metallic Compounds for Water Electrolysis. Energies. 2025; 18(16):4223. https://doi.org/10.3390/en18164223
Chicago/Turabian StyleZhang, Xiaoyan, Xueqing Pan, Xiaoyi Wu, Yufang Xie, Yin Yin, and Xinchun Yang. 2025. "Heteroatom Doping of Transition Metallic Compounds for Water Electrolysis" Energies 18, no. 16: 4223. https://doi.org/10.3390/en18164223
APA StyleZhang, X., Pan, X., Wu, X., Xie, Y., Yin, Y., & Yang, X. (2025). Heteroatom Doping of Transition Metallic Compounds for Water Electrolysis. Energies, 18(16), 4223. https://doi.org/10.3390/en18164223