Reliability Study of Electric Buses in the Urban Public Transport System
Abstract
1. Introduction
Literature Review
2. Subjects and Conditions of the Study
3. Test Method
- for c < 1, the damage intensity decreases as a function of time. This suggests that some copies of the tested vehicles may have manufacturing defects, which results in their gradual removal from the population.
- for c = 1, the intensity of the failures is constant and the reliability model takes a form analogous to the exponential distribution.
- for c > 1, the intensity of failure increases over time. In this case, it is assumed that the main cause of failure is the physical wear and tear of the object.
- E(TE12) is the mean time between failures (MTBF) for electric buses.
- E(TS12) is the mean time between failures (MTBF) for internal combustion engine buses.
4. Test Results
4.1. Reliability Characteristics of the Bus as a Whole
4.1.1. Descriptive Statistics and Weibull Model of Bus Reliability
4.1.2. Evaluation of the Statistical Consistency of Bus Reliability Characteristics
- For the average value of the mileage in the sample,
- For the parameter b of the Weibull model,
- For the set reliability: R*(t) = 0.5,
- For the set reliability: R*(t) = 0.8,
4.2. Reliability Characteristics of Structural Systems
4.2.1. Descriptive Statistics and Parameters of the Weibull Model
4.2.2. Functional Characteristics of Reliability of Structural Systems
- traction engine—16,329 km
- auxiliary engine—7581 km
- current regulator relay—15,746 km
- voltage relay—16,329 km
- current relay—15,716 km
- batteries—11,080 km
- traction batteries—10,032 km
- electrical system—15,000 km
- charging system—10,277 km
5. Conclusions
- For the average value of the mileage in the sample,
- For the parameter b of the Weibull model,
- For the set reliability: R*(t) = 0.5,
- For the set reliability: R(t) = 0.8,
Perspective for Practical Use of the Results and Suggestions for Future Research Directions
- Statistical analysis and standardization of indicators for the repair of all damaged vehicle components.
- Conducting an engineering analysis of the causes of damage in the context of assessing reliability risks for the continuity of bus operation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ammenberg, J.; Dahlgren, S. Sustainability Assessment of Public Transport, Part I—A Multi-Criteria Assessment Method to Compare Different Bus Technologies. Sustainability 2021, 13, 825. [Google Scholar] [CrossRef]
- Chan, W.C.; Ibrahim, W.H.W.; Lo, M.C.; Suaidi, M.K.; Ha, S.T. Determinants of customer satisfaction and loyalty in public transport: A PLS-SEM approach. Stud. Appl. Econ. 2021, 39, 1–23. [Google Scholar] [CrossRef]
- Zwierzchowska, M. Ocena jakości usług komunikacji miejskiej-dobór zmiennych metodą delficką. Autobusy–Tech. Eksploat. Syst. Transp. 2018, 219, 18–21. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Zhang, Y.; Guo, J. Analyzing urban bus service reliability at the stop, route, and network levels. Transp. Res. Part A Policy Pract. 2009, 43, 722–734. [Google Scholar] [CrossRef]
- Laizāns, A.; Graurs, I.; Rubenis, A.; Utehin, G. Economic viability of electric public busses: Regional perspective. Procedia Eng. 2016, 134, 316–321. [Google Scholar] [CrossRef]
- Telakowiec, K.; Szarek, S. Ocena stanu infrastruktury i sposobu funkcjonowania transportu miejskiego w Warszawie i Kopenhadze. Wydaw. Uniw. Przyr.-Humanist. W Siedlcach 2016, 12, 187–199. [Google Scholar]
- Yatskiv, I.; Pticina, I.; Savrasovs, M. Urban Public Transport System’s Reliability Estimation Using Microscopic Simulation. Transp. Telecommun. J. 2012, 13, 219–228. [Google Scholar] [CrossRef]
- Mańka, A.; Mańka, I. Analiza ryzyka jako narzędzie zapewniania bezpieczeństwa w transporcie publicznym. Komun. Publiczna 2016, 3, 23–30. [Google Scholar]
- Niewczas, A.; Mórawski, Ł.; Rymarz, J.; Dębicka, E.; Hołyszko, P. Operatinal risk assessment model for city buses. Eksploat. I Niezawodn.-Maint. Reliab. 2023, 25, 14. [Google Scholar] [CrossRef]
- Smalko, Z.; Nowakowski, T.; Tubis, A. Zarys Niezawodnościowej Teorii Zagrożeń; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2020. [Google Scholar]
- Veeneman, W.; Wilschut, J.; Urlings, T.; Blank, J.; van de Velde, D. Efficient frontier analysis of Dutch public transport tendering: A first analysis. Res. Transp. Econ. 2014, 48, 101–108. [Google Scholar] [CrossRef]
- Raposo, H.; Farinha, J.T.; Ferreira, L.; Galar, D. An integrated econometric model for bus replacement and determination of reserve fleet size based on predictive maintenance. Eksploat. I. Niezawodn.-Maint. Reliab. 2017, 19, 358–368. [Google Scholar] [CrossRef]
- Gołąbek, A. (red.): NIEZAWODNOŚĆ Autobusów; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 1993. [Google Scholar]
- Młyńczak, M. Metodyka Badań Eksploatacyjnych Obiektów Mechanicznych; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2012. [Google Scholar]
- Nowakowski, T.; Tubis, A.; Werbińska-Wojciechowska, S. ISO 55001 and difficulties of its implementation in polish enterprises. J. KONBiN 2017, 42, 209. [Google Scholar] [CrossRef][Green Version]
- Mahboob, Q.; Zio, E. Handbook of RAMS in Railway Systems: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Niewczas, A.; Rymarz, J.; Dębicka, E. Stages of operating vehicles with respect to operational efficiency using city buses as an example. Eksploat. I Niezawodn.-Maint. Reliab. 2019, 21, 21–27. [Google Scholar] [CrossRef]
- Andrzejczak, K.; Selech, J. Quantile analysis of the operating costs of the public transport fleet. Transp. Probl. 2017, 12, 103–111. [Google Scholar] [CrossRef]
- Michalski, R.; Wierzbicki, S. Comparative reliability tests of city transport busses. Eksploat. I Niezawodn.-Maint. Reliab. 2006, 4, 22–26. [Google Scholar]
- Andrzejczak, K.; Selech, J. Investigating the trends of average costs of corrective maintenance of public transport vehicles. J. KONBiN 2017, 41, 207–226. [Google Scholar] [CrossRef]
- Młyńczak, M.; Muzdybayev, M.; Muzdybayeva, A.; Myrzabekova, D. Reliability Assessment of Driving Systems of City Buses. In Advances in Dependability Engineering of Complex Systems; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; p. 582. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Malozyomov, B.V.; Kukartsev, V.V.; Gozbenko, V.E.; Konyukhov, V.Y.; Mikhalev, A.S. Determination of the reliability of urban electric transport running autonomously through diagnostic parameters. World Electr. Veh. J. 2023, 14, 334. [Google Scholar] [CrossRef]
- Yuan, X.; Lu, Z. Efficient approach for reliability-based optimization based on weighted importance sampling approach. Reliab. Eng. Syst. Saf. 2014, 132, 107–114. [Google Scholar] [CrossRef]
- Oszczypała, M.; Ziółkowski, J.; Małachowski, J. Semi-Markov approach for reliability modelling of light utility vehicles. Eksploat. I Niezawodn.-Maint. Reliab. 2023, 25, 161859. [Google Scholar] [CrossRef]
- Selech, J.; Andrzejczak, K. An aggregate criterion for selecting a distribution for times to failure of components of rail vehicles. Eksploat. I Niezawodn.-Maint. Reliab. 2020, 22, 102–111. [Google Scholar] [CrossRef]
- Rymarz, J. Badania Efektywności Eksploatacyjnej Autobusów Komunikacji Miejskiej; Wydawnictwo Politechniki Lubelskiej: Lublin, Poland, 2021. [Google Scholar]
- Borucka, A.; Stopka, O.; Kozłowski, E. Analysis of electric vehicles in the context of the world’s largest economies. Arch. Automot. Eng. Arch. Motoryz. 2024, 106, 65–82. [Google Scholar] [CrossRef]
- Analizy Statystyczne GUS, Transport Drogowy w Polsce w Latach 2022 i 2023, Warszawa Szczecin 2024. Available online: https://stat.gov.pl/obszary-tematyczne/transport-i-lacznosc/ (accessed on 30 October 2024).
- Brdulak, J.; Pawlak, P. Międzynarodowe aspekty jakościowych zmian transportu samochodowego związane z elektromobilnością. Kwart. Nauk. O Przedsiębiorstwie 2022, 66, 5–16. [Google Scholar] [CrossRef]
- Dahlgren, S.; Ammenberg, J. Sustainability of Public Transport, Part II—Applying a Multi-Criteria Assessment Method of Compare Different Bus Technologies. Sustainability 2021, 13, 1273. [Google Scholar] [CrossRef]
- Vepsäläinen, J.; Ritari, A.; Lajunen, A.; Kivekäs, K.; Tammi, K. Energy uncertainty analysis of electric buses. Energies 2018, 11, 3267. [Google Scholar] [CrossRef]
- Taysayev, K.; Terentyev, A.; Evtukov, S.; Arifullin, I. Efficiency ratio assessment model for buses. Transp. Res. Procedia 2020, 50, 674–680. [Google Scholar] [CrossRef]
- Ritari, A.; Vepsäläinen, J.; Kivekäs, K.; Tammi, K.; Laitinen, H. Energy consumption and lifecycle cost analysis of electric city buses with multispeed gearboxes. Energies 2020, 13, 2117. [Google Scholar] [CrossRef]
- Szürke, S.K.; Saly, G.; Lakatos, I. Analyzing Energy Efficiency and Battery Supervision in Electric Bus Integration for Improved Urban Transport Sustainability. Sustainability 2024, 16, 8182. [Google Scholar] [CrossRef]
- Komorska, I.; Puchalski, A.; Niewczas, A.; Ślęzak, M.; Szczepański, T. Adaptive driving cycles of EVs for reducing energy consumption. Energies 2021, 14, 2592. [Google Scholar] [CrossRef]
- Kozłowski, E.; Wiśniowski, P.; Gis, M.; Zimakowska-Laskowska, M.; Borucka, A. Vehicle acceleration and speed as factors determining energy consumption in electric vehicles. Energies 2024, 17, 4051. [Google Scholar] [CrossRef]
- Al-Saadi, M.; Mathes, M.; Käsgen, J.; Robert, K.; Mayrock, M.; Mierlo, J.V. Optimization and analysis of electric vehicle operation with fast-charging technologies. World Electr. Veh. J. 2022, 13, 20. [Google Scholar] [CrossRef]
- Hou, K.; Xu, X.; Jia, H.; Yu, X.; Jiang, T.; Zhang, K. A reliability assessment approach for integrated transportation and electrical power systems incorporating electric vehicles. IEEE Trans. Smart Grid 2016, 9, 88–100. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, K.; Shen, Z.-J.M.; Miao, L. Charging network planning for electric bus cities: A case study of Shenzhen, China. Sustainability 2019, 11, 4713. [Google Scholar] [CrossRef]
- Wang, N.; Pei, Y.; Wang, Y.-J. Antecedents in Determining Users’ Acceptance of Electric Shuttle Bus Services. Mathematics 2022, 10, 2896. [Google Scholar] [CrossRef]
- Li, L.; Liu, Q. Study on the influence of acceleration curve on electric vehicle energy consumption and battery life. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 512, p. 012106. [Google Scholar] [CrossRef]
- Małek, A.; Dudziak, A.; Stopka, O.; Caban, J.; Marciniak, A.; Rybicka, I. Charging Electric Vehicles from Photovoltaic Systems—Statistical Analyses of the Small Photovoltaic Farm Operation. Energies 2022, 15, 2137. [Google Scholar] [CrossRef]
- Malozyomov, B.V.; Martyushev, N.V.; Konyukhov, V.Y.; Oparina, T.A.; Zagorodnii, N.A.; Efremenkov, E.A. Mathematical analysis of the reliability of modern trolleybuses and electric buses. Mathematics 2023, 11, 3260. [Google Scholar] [CrossRef]
- Silva-Ortega, J.; Ortíz, J.; Candelo-Becerra, J.E. A New Method to Assess the Reliability and Security of Urban Electrical Substations. Electricity 2024, 5, 991–1007. [Google Scholar] [CrossRef]
- Niewczas, A.; Mórawski, Ł.; Dębicka, E.; Rymarz, J.; Kasperek, D.; Hołyszko, P. A Comparative Study of the Availability of Electric Buses in the Public Transport System. Applied Sciences. Multidiscip. Digit. Publ. Inst. 2025, 15, 1212. [Google Scholar] [CrossRef]
- O’Connor, P.; Kleyner, A. Practical Reliability Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Hang, T.; Wen, J.; Zheng, B.S.; Xiao, J.H.; Zhou, F. Reliability analysis of the vehicle door system EDCU based on Weibull distribution. Eksploat. I Niezawodn.-Maint. Reliab. 2025, 27, 195257. [Google Scholar] [CrossRef]
- Trivedi, K.S.; Bobbio, A. Reliability and Availability Engineering: Modeling, Analysis, and Applications; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
Parameter | SOLARIS URBINO 12 ELECTRIC–E12 (Research Sample) | SOLARIS URBINO 12
|
---|---|---|
Length | 12,000 mm | 12,000 mm |
Door system | 2-2-2 | 2-2-2 |
Passenger capacity | 81 | 103 |
Number of seats | 29 | 29 |
Battery capacity | 120 kWh | n/a |
Charging | Plug-in, up to 450 kW | n/a |
Engine | Central engine asynchronous, 240 kW | DAF PR 183 S1 engine 188 kW/9186 cm3 |
DMC | 18,745 kg | 18,000 kg |
Exhaust emission standard | n/a | EURO VI |
Indicator Name | Unit of Measure | Indicator Value | |
---|---|---|---|
S12 | E12 | ||
Number of objects in the sample | pcs | 20 | 32 |
Research period | months | 36 | 36 |
Number of failures in the sample | pcs | 2104 | 3747 |
Average mileage between failures | km | 2029.3 | 1714.3 |
Median | Km | 1580.7 | 944.0 |
Minimum mileage | Km | 109.8 | 189.0 |
Maximum mileage | Km | 22,427.0 | 24,582.0 |
Standard deviation | km | 1714.6 | 2166.5 |
Type of Vehicle | Shape Parameter (c) | Scale Parameter (b) |
---|---|---|
E12 | 0.92254 | 1647 |
S12 | 1.4097 | 2256 |
Dependent: Position | Kruskal-Wallis Rank-Sum; Reliability Independent (Grouping) Variable: Type of Vehicle Kruskal-Wallis Test: H (1, N = 5848) = 5.0355 p = 0.0248 | ||
---|---|---|---|
N Valid | Sum of Ranks | Average Rank | |
E12 | 3744 | 110,88,373 | 2961.64 |
S12 | 2104 | 6014,103 | 2858.41 |
Dependent: Position | Median Test, Overall Median = 0.5485 Independent (Grouping) Variable: Type of Vehicle χ2 = 0.2714450 df = 1 p = 0.6024 | ||
---|---|---|---|
E12 | S12 | Together | |
≤medians: observ. | 1865.00 | 1063.00 | 2928.00 |
expected | 1874.56 | 1053.44 | |
observed-expected | −9.56 | 9.56 | |
>medians: observ. | 1879.00 | 1041.00 | 2920.00 |
expected | 1869.44 | 1050.56 | |
observed-expected | 9.56 | −9.56 | |
total: observed | 3744.00 | 2104.00 | 5848.00 |
Dependent: Position | Value of p for Multiple Comparisons; Vehicle Reliability Independent (Grouping) Variable: Type of Vehicle Kruskal–Wallis Test: H (1, N = 5848) = 5.035456; p = 0.0248 | |
---|---|---|
E12 R:2961.6 | S12 R:2858.4 | |
E12 | 0.024835 | |
S12 | 0.024835 |
Structural Layout | Average [km] | Standard Deviation [km] | Max [km] |
---|---|---|---|
Traction batteries (TB) | 2172 | 8163.4 | 135,198 |
Battery cooling system (BCS) | 1434 | 1691.1 | 8968 |
Charging system (ChS) | 1449 | 1811.5 | 12,096 |
High voltage system (HVS) | 1603 | 2098.2 | 10,773 |
Electrical system | 1438 | 2130.3 | 24,582 |
Doors | 1586 | 2098.3 | 22,523 |
Brake system | 1619 | 1942.8 | 13,311 |
Heating and air conditioning | 1670 | 2051.9 | 11,395 |
Structural Layout | Shape Parameter—c | Scale Parameter—b |
---|---|---|
Traction batteries (TB) | 0.90850 | 15,957 |
Battery cooling system (BCS) | 0.85895 | 40,657 |
Charging system (ChS) | 0.85587 | 16,424 |
High voltage system (HVS) | 0.86184 | 102,600 |
Electrical system | 0.83809 | 23,254 |
Doors | 0.88840 | 14,154 |
Brake system | 0.90984 | 35,674 |
Heating and air conditioning | 0.91119 | 31,952 |
Structural Layout | Shape Parameter—c | Scale Parameter—b |
---|---|---|
Engine (EnS) | 0.92473 | 22,878 |
Cooling system (CS) | 0.72257 | 45,706 |
Pneumatic system (PS) | 0.75355 | 28,881 |
Electrical system (ES) | 0.96719 | 10,895 |
Doors (DS) | 0.84302 | 23,713 |
Brake system (BS) | 0.88570 | 71,655 |
Heating and air conditioning (HAC) | 1.1043 | 122,800 |
Suspension system | 1.0650 | 111,700 |
Structural Layout | R*(t) = 0.8 | R*(t) = 0.5 |
---|---|---|
Traction batteries (TB) | 3024 | 10,032 |
Battery cooling system (BCS) | 6100 | 26,464 |
Charging system (ChS) | 2835 | 10,277 |
High voltage system (HVS) | 10,800 | - |
Electrical system (ES) | 3870 | 15,060 |
Doors (DS) | 2610 | 9430 |
Brake system (BS) | 6630 | 23,636 |
Heating and air conditioning (HAC) | 6156 | 8020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewczas, A.; Rymarz, J.; Ślęzak, M.; Kasperek, D.; Hołyszko, P. Reliability Study of Electric Buses in the Urban Public Transport System. Energies 2025, 18, 3863. https://doi.org/10.3390/en18143863
Niewczas A, Rymarz J, Ślęzak M, Kasperek D, Hołyszko P. Reliability Study of Electric Buses in the Urban Public Transport System. Energies. 2025; 18(14):3863. https://doi.org/10.3390/en18143863
Chicago/Turabian StyleNiewczas, Andrzej, Joanna Rymarz, Marcin Ślęzak, Dariusz Kasperek, and Piotr Hołyszko. 2025. "Reliability Study of Electric Buses in the Urban Public Transport System" Energies 18, no. 14: 3863. https://doi.org/10.3390/en18143863
APA StyleNiewczas, A., Rymarz, J., Ślęzak, M., Kasperek, D., & Hołyszko, P. (2025). Reliability Study of Electric Buses in the Urban Public Transport System. Energies, 18(14), 3863. https://doi.org/10.3390/en18143863