Assessment of the Potential for Biogas Production in Post-Conflict Rural Areas in Colombia Using Cocoa Residues
Abstract
1. Introduction
2. Materials and Methods
2.1. General Methodology for the Review
2.2. Identification of Prioritized Regions
2.3. The Cocoa Production in the Prioritized Regions
2.4. The Residues Derived from Cocoa Industrialization in the Prioritized Regions
2.5. Potential of Biogas Production Using Residues from Cocoa Industrialization in the Prioritized Regions
3. Results and Discussion
3.1. Identification of Prioritized Regions Subsection
3.2. Cocoa Production in the Prioritized Regions
3.3. Amount of Residues Derived from Cocoa Industrialization in the Prioritized Regions
- Cocoa pod husks (CPHs) constitute the external part of the fruit and are composed of three layers (endocarp, mesocarp, and epicarp). It is the most abundant residue (i.e., between 67% and 76% of the mass of the cocoa fruit) and it has been the most studied by several authors [74,75,76]. Among the studies stand those that have found the use of CPH as a precursor for the production of biofuels and fertilizers [77], and the production of low added value products such as soaps or animal feed [28].
- Mucilage (CM) is a residue of whitish appearance that constitutes a fraction of the pulping process. This is a controlled fermentation where biochemical reactions attempt the separation of the grain from the mucilage. The amount of this residue depends on the type of cocoa, the state of maturation, and its physical integrity [28] and is usually between 3 and 5% of the weight of the total fruit [28,78].
3.4. Biogas Production Potential from the Waste Studied, and the Production Yield of Each Type of Waste
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | family farming |
SDGs | Sustainable Development Goals |
GDP | gross domestic product |
VS | volatile solids |
UNFCCC | United Nations Framework Convention on Climate Change |
CPH | cacao pod husk |
CM | mucilage |
CBS | cocoa bean shell |
AD | anerobic digestion |
Agronet | Ministry of Agriculture of Colombia |
ICA | Agricultural Institute |
FAO | Food and Agriculture Organization of the United Nations |
DANE | National Administrative Department of Statistics |
PDET | Territorial Development Plan |
RPR | residue index |
MADR | Ministry of Agriculture and Rural Development |
MS | systematic mapping |
GEI | greenhouse gas emissions |
SMP | specific methane production |
C/N | carbon nitrogen |
COD | total organic load |
DF | dark fermentation |
ASBR | anaerobic sequencing batch reactor |
References
- Solarte-Toro, J.C.; Cardona Alzate, C.A. Biorefineries as the Base for Accomplishing the Sustainable Development Goals (SDGs) and the Transition to Bioeconomy: Technical Aspects, Challenges and Perspectives. Bioresour. Technol. 2021, 340, 125626. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.; Pandit, R.K. Smart Cities in India: Linkages with Circular Economy. In Sustainability in the Built Environment in the 21st Century: Lessons Learned from India and the Region; Iyer-Raniga, U., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 185–200. [Google Scholar]
- Mukherjee, A.; Okolie, J.A.; Tyagi, R.; Dalai, A.K.; Niu, C. Pyrolysis Kinetics and Activation Thermodynamic Parameters of Exhausted Coffee Residue and Coffee Husk Using Thermogravimetric Analysis. Can. J. Chem. Eng. 2021, 99, 1683–1695. [Google Scholar] [CrossRef]
- De-Lucas, A.I.; Taranco, C.d.P.; Rodríguez-García, E.; Paniagua, P.P. Biomasa, Biocombustibles y Sostenibilidad; Centro Tecnológico Agrario y Agroalimentario: Palencia, Spain, 2012; Volume 13, ISBN 9788493189150. [Google Scholar]
- Naqvi, S.R.; Jamshaid, S.; Naqvi, M.; Farooq, W.; Niazi, M.B.K.; Aman, Z.; Zubair, M.; Ali, M.; Shahbaz, M.; Inayat, A.; et al. Potential of Biomass for Bioenergy in Pakistan Based on Present Case and Future Perspectives. Renew. Sustain. Energy Rev. 2018, 81, 1247–1258. [Google Scholar] [CrossRef]
- Bautista-Cespedes, O.V.; Willemen, L.; Castro-Nunez, A.; Groen, T.A. The Effects of Armed Conflict on Forest Cover Changes across Temporal and Spatial Scales in the Colombian Amazon. Reg. Environ. Change 2021, 21, 70. [Google Scholar] [CrossRef]
- Escallón, J.M.V. The Historical Relationship between Agrarian Reforms and Internal Armed Conflicts: Relevant Factors for the Colombian Post-Conflict Scenario. Land Use Policy 2021, 101, 105138. [Google Scholar] [CrossRef]
- Saavedra-Sanabria, O.L.; Durán, D.; Cabezas, J.; Hernández, I.; Blanco-Tirado, C.; Combariza, M.Y. Cellulose Biosynthesis Using Simple Sugars Available in Residual Cacao Mucilage Exudate. Carbohydr. Polym. 2021, 274, 118645. [Google Scholar] [CrossRef]
- Shahid, M.K.; Batool, A.; Kashif, A.; Nawaz, M.H.; Aslam, M.; Iqbal, N.; Choi, Y. Biofuels and Biorefineries: Development, Application and Future Perspectives Emphasizing the Environmental and Economic Aspects. J. Environ. Manag. 2021, 297, 113268. [Google Scholar] [CrossRef]
- Fernando, Y.; Tseng, M.L.; Aziz, N.; Ikhsan, R.B.; Wahyuni-TD, I.S. Waste-to-Energy Supply Chain Management on Circular Economy Capability: An Empirical Study. Sustain. Prod. Consum. 2022, 31, 26–38. [Google Scholar] [CrossRef]
- Saravanan, A.; Hemavathy, R.V.; Sundararaman, T.R.; Jeevanantham, S.; Kumar, P.S.; Yaashikaa, P.R. Solid Waste Biorefineries. In Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–17. [Google Scholar] [CrossRef]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.W.; Verniquet, A.; Broeze, J.; et al. A Research Challenge Vision Regarding Management of Agricultural Waste in a Circular Bio-Based Economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Sarsaiya, S.; Kumar, V.; Chaturvedi, P.; Sindhu, R.; Binod, P.; Zhang, Z.; Pandey, A.; Awasthi, M.K. Processing of Municipal Solid Waste Resources for a Circular Economy in China: An Overview. Fuel 2022, 317, 123478. [Google Scholar] [CrossRef]
- World Bank ESCAP: International Trade Costs | DataBank. Available online: https://databank.worldbank.org/source/escap-world-bank:-international-trade-costs (accessed on 25 March 2025).
- Corro, G.; Pal, U.; Bañuelos, F.; Rosas, M. Generation of Biogas from Coffee-Pulp and Cow-Dung Co-Digestion: Infrared Studies of Postcombustion Emissions. Energy Convers. Manag. 2013, 74, 471–481. [Google Scholar] [CrossRef]
- Oosterkamp, W.J. Chapter 13—Use of Volatile Solids from Biomass for Energy Production. In Bioenergy Research: Advances and Applications; Gupta, V.K., Tuohy, M.G., Kubicek, C.P., Saddler, J., Xu, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 203–217. ISBN 9780444595614. [Google Scholar]
- González Álvarez, J. Las Biorrefinerías: Aplicación a Materiales y Residuos Lignocelulósicos. Horizonte 2050. bie3 Boletín IEEE 2018, 11, 718–731. [Google Scholar]
- Presidente de la República. Decreto Ley 893 de 2017—Gestor Normativo—Función Pública. 2017; p. 11. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=81856 (accessed on 12 March 2025).
- Álvarez Riascos, K.T. Desarrollo Local Como Herramienta de Postconflicto En Colombia. GeoGraphos. Rev. Digit. Estud. Geogr. Cienc. Soc. 2016, 7, 1–35. [Google Scholar] [CrossRef]
- Suarez, A.; Árias-Arévalo, P.A.; Martínez-Mera, E. Environmental Sustainability in Post-Conflict Countries: Insights for Rural Colombia. Environ. Dev. Sustain. 2018, 20, 997–1015. [Google Scholar] [CrossRef]
- Galván, M.; Degano, S.; Hilbert, J.; Montenegro, M.; Becker, A. CONICET | Buscador de Institutos y Recursos Humanos. In Proceedings of the Caracterización y Adaptación de Sustratos de Faena Porcina para la Producción de Biogás Mediante Digestión Anaeróbica, Córdova, Argentina, 14–16 June 2017; pp. 1–7. [Google Scholar]
- González Cuenca, D.; Molina, D.E.; María, A.; Ramírez, M. Paz Ambiental y Paz Territorial: Los Desafíos de Colombia Para El Postconflicto; Blanch, E.T.L., Ed.; Universidad Santo Tomás: Tolima, Colombia, 2020; pp. 24–39. [Google Scholar] [CrossRef]
- Suarez, A.; Arias-Arévalo, P.; Martinez-Mera, E.; Granobles-Torres, J.C.; Enríquez-Acevedo, T. Involving Victim Population in Environmentally Sustainable Strategies: An Analysis for Post-Conflict Colombia. Sci. Total Environ. 2018, 643, 1223–1231. [Google Scholar] [CrossRef]
- Slunge, D.; García, J.H.; Garcia, J.; Slunge, D. Environment and Climate Change Management: Perspectives for Post Conflict-Colombia. Policy Brief Swed. 2015, 2, 2–35. [Google Scholar]
- Banerjee, O.; Cicowiez, M.; Vargas, R.; Obst, C.; Cala, J.R.; Alvarez-Espinosa, A.C.; Melo, S.; Riveros, L.; Romero, G.; Meneses, D.S. Gross Domestic Product Alone Provides Misleading Policy Guidance for Post-Conflict Land Use Trajectories in Colombia. Ecol. Econ. 2021, 182, 106929. [Google Scholar] [CrossRef]
- Valverde García, D.; Pérez Esteve, É.; Barat Baviera, J.M. Changes in Cocoa Properties Induced by the Alkalization Process: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2200–2221. [Google Scholar] [CrossRef]
- Badrie, N.; Bekele, F.; Sikora, E.; Sikora, M. Cocoa Agronomy, Quality, Nutritional, and Health Aspects. Crit. Rev. Food Sci. Nutr. 2015, 55, 620–659. [Google Scholar] [CrossRef]
- Mendoza-Meneses, C.J.; Feregrino-Pérez, A.A.; Gutiérrez-Antonio, C. Potential Use of Industrial Cocoa Waste in Biofuel Production. J. Chem. 2021, 2021, 3388067. [Google Scholar] [CrossRef]
- Escobar, D.; Juarez, M.; Martinez, B.; Romero, T.; Cuervo, J.; Tirado, J.; Utrilla, M.; Morales, M. Producción de Etanol a Partir de Jugo de Mucílago de Cacao (Theobroma cacao) Como Subproducto de La Fermentación. Ing. Química 2019, 95, 1–4. [Google Scholar]
- Mišević, P.; Volarević, H.; Perić, M. The Trend Analysis of Less Sugar Chocolate Confectionery Markets. In Book of Proceedings, Economic and Social Development, 52nd International Scientific Conference; Varazdin Development and Entrepreneurship Agency: Varazdin, Croatia, 2020; p. 654. [Google Scholar]
- Guirlanda, C.P.; da Silva, G.G.; Takahashi, J.A. Cocoa Honey: Agro-Industrial Waste or Underutilized Cocoa by-Product? Future Foods 2021, 4, 100061. [Google Scholar] [CrossRef]
- Beg, M.S.; Ahmad, S.; Jan, K.; Bashir, K. Status, Supply Chain and Processing of Cocoa—A Review. Trends Food Sci. Technol. 2017, 66, 108–116. [Google Scholar] [CrossRef]
- ISO 34101-1:2019; Sustainable and Traceable Cocoa—Part 1: Requirements for Cocoa Sustainability Management Systems. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/64765.html (accessed on 3 May 2025).
- Hii, C.L.; Law, C.L.; Cloke, M. Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa. J. Food Eng. 2009, 90, 191–198. [Google Scholar] [CrossRef]
- Ghysels, S.; Acosta, N.; Estrada, A.; Pala, M.; De Vrieze, J.; Ronsse, F.; Rabaey, K. Integrating Anaerobic Digestion and Slow Pyrolysis Improves the Product Portfolio of a Cocoa Waste Biorefinery. Sustain. Energy Fuels 2020, 4, 3712–3725. [Google Scholar] [CrossRef]
- Handojo, L.; Triharyogi, H.; Indarto, A. Cocoa Bean Shell Waste as Potential Raw Material for Dietary Fiber Powder. Int. J. Recycl. Org. Waste Agric. 2019, 8, 485–491. [Google Scholar] [CrossRef]
- European Forest Institute. Alisos. Climate Focus Diagnóstico de La Cadena de Valor Del Cacao, y Mapeo de Los Indicadores y Sistemas de Información Existentes. EUREDD Facil. 2021, 1, 30. [Google Scholar]
- Boletín Técnico Encuesta Nacional Agropecuaria (ENA) 2017 Encuesta Nacional Agropecuaria. Available online: https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2017/boletin_ena_2017.pdf (accessed on 5 April 2025).
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food Waste-to-Energy Conversion Technologies: Current Status and Future Directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Das, A.; Emele, L.; Meinke-Hubeny, F.; Moorkens, I.; Nissen, C.; Tomescu, M. Renewable Energy in Europe 2018: Recent Growth and Knock-on Effects; European Environment Agency: Copenhagen, Denmark, 2018; p. 76. [Google Scholar]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Reinelt, T.; Delre, A.; Westerkamp, T.; Holmgren, M.A.; Liebetrau, J.; Scheutz, C. Comparative Use of Different Emission Measurement Approaches to Determine Methane Emissions from a Biogas Plant. Waste Manag. 2017, 68, 173–185. [Google Scholar] [CrossRef]
- Ding, H.; Xu, F. Chapter 20-Production of Phytochemicals, Dyes and Pigments as Coproducts in Bioenergy Processes. In Bioenergy Research: Advances and Applications; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 353–365. ISBN 9780444595614. [Google Scholar]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Castellanos, D.; Martínez, J.M.R.; Patiño, P.O.G.; Vargas, J.C.; Lozano, M.E.V.; González, C.S.D.; Montoya, O.Q.; Hernández, D.M.D.; Cortes, Y.P.M.; Lombana, L.F.Z.; et al. Estimación Del Potencial de Conversión a Biogás de La Biomasa En Colombia y Su Aprovechamiento; Universidad Nacional de Colombia: Bogotá, Colombia, 2017. [Google Scholar]
- Rodríguez, A.G.; Rodrigues, M.; Sotomayor, O. Hacia Una Bioeconomía Sostenible en América Latina y el Caribe Elementos Para Una Visión Regional; Recursos Naturales y Desarrollo 191; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Ferrer, I.; Lansing, S.; Martí-Herrero, J. (Eds.) Biogas for Rural Areas; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2022. [Google Scholar]
- Hernando Herrera, H. Generación de Energía a Través de Biogás Em Colombia; Universidad Federal de Integración Latinoamericana: Foz do Iguaçu, Brazil, 2013. [Google Scholar]
- Vásquez, Z.S.; de Carvalho Neto, D.P.; Pereira, G.V.M.; Vandenberghe, L.P.S.; de Oliveira, P.Z.; Tiburcio, P.B.; Rogez, H.L.G.; Góes Neto, A.; Soccol, C.R. Biotechnological Approaches for Cocoa Waste Management: A Review. Waste Manag. 2019, 90, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Ferraz Dutra, J.; Passos, M.F.; García, G.J.Y.; Gomes, R.F.; Magalhães, T.A.; dos Santos Freitas, A.; Laguna, J.G.; da Costa, F.M.R.; da Silva, T.F.; Rodrigues, L.S.; et al. Anaerobic Digestion Using Cocoa Residues as Substrate: Systematic Review and Meta-Analysis. Energy Sustain. Dev. 2023, 72, 265–277. [Google Scholar] [CrossRef]
- Avila, J.M.S.; Noboa, J.W.D.; Rivera, F.R.P.; Quezada, J.P.S. Estimación Del Potencial de Producción de Bioetanol a Partir de Los Residuos de La Corteza Del Cacao En Ecuador. Cienc. Tecnol. Agropecu. 2020, 21, 1–20. [Google Scholar] [CrossRef]
- McDonagh, M.S.; Kleijnen, J.; Whiting, P.F.; Wilson, P.M.; Sutton, A.J.; Chestnutt, I.; Cooper, J.; Misso, K.; Bradley, M.; Treasure, E. Systematic Review of Water Fluoridation. BMJ 2000, 321, 855–859. [Google Scholar] [CrossRef]
- Salcedo-Puerto, O.; Mendoza-Martinez, C.; Vakkilainen, E. Solid Residues from Cocoa Production Chain: Assessment of Thermochemical Valorization Routes. Renew. Sustain. Energy Rev. 2025, 208, 115048. [Google Scholar] [CrossRef]
- Yan, Y.; Yan, M.; Ravenni, G.; Angelidaki, I.; Fu, D.; Fotidis, I.A. Novel Bioaugmentation Strategy Boosted with Biochar to Alleviate Ammonia Toxicity in Continuous Biomethanation. Bioresour. Technol. 2022, 343, 126146. [Google Scholar] [CrossRef]
- Kitchenham, B.A.; Budgen, D.; Pearl Brereton, O. Using Mapping Studies as the Basis for Further Research—A Participant-Observer Case Study. Inf. Softw. Technol. 2011, 53, 638–651. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Corredor, Y.A.V.; Pérez, L.I.P. Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad De Ciencias Básicas 2018, 14, 59–72. [Google Scholar] [CrossRef]
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five Steps to Conducting a Systematic Review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 26–27 June 2008. [Google Scholar] [CrossRef]
- Presidencia de La Republica de Colombia. Decreto 2566 de 2003; p. 15. Available online: https://www.mineducacion.gov.co/1780/w3-article-104846.html (accessed on 4 June 2025).
- FAO. Residuos Agrícolas Y Residuos Ganaderos-Manual De Usuario; FAO: Rome, Italy, 2014; p. 35. Available online: https://www.fao.org/publications/card/es/c/20a4bb52-4d9b-4963-b8e5-73465c93cbdf/ (accessed on 4 June 2025).
- SIPRA. Available online: https://sipra.upra.gov.co/nacional (accessed on 2 April 2025).
- Biblioteca Agropecuaria de Colombia—BAC. Available online: https://www.agrosavia.co/biblioteca (accessed on 2 April 2025).
- Grajales, D.F.P. Agromapas, Geospatial Platform for Rural Affairs in Colombia. In Proceedings of the 3rd International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2014, Beijing, China, 11–14 August 2014. [Google Scholar] [CrossRef]
- Ritchie, S.M.; Banyas, K.M.; Sevin, C. A Comparison of Selected Bibliographic Database Search Retrieval for Agricultural Information. Issues Sci. Technol. Librariansh. 2019, 2019, 1–24. [Google Scholar] [CrossRef]
- Deka, S.K.; Lahkar, N. Performance Evaluation and Comparison of the Five Most Used Search Engines in Retrieving Web Resources. Online Inf. Rev. 2010, 34, 757–771. [Google Scholar] [CrossRef]
- Voorhees, E.M. The Philosophy of Information Retrieval Evaluation. In Evaluation of Cross-Language Information Retrieval Systems; Springer: Cham, Switzerland, 2002; pp. 355–370. [Google Scholar] [CrossRef]
- Stokes, P.; Foster, A.; Urquhart, C. Beyond Relevance and Recall: Testing New User-Centred Measures of Database Performance. Health Inf. Libr. J. 2009, 26, 220–231. [Google Scholar] [CrossRef]
- Sewell, R.R. Comparing Four CAB Abstracts Platforms from a Veterinary Medicine Perspective. J. Electron. Resour. Med. Libr. 2011, 8, 134–149. [Google Scholar] [CrossRef]
- Quintero Osorno, C.A.; Quiroga Velasco, L.F. Estimación Del Potencial Energético a Partir de La Biomasa Primaria Agrícola En El Departamento de Cundinamarca. 2017. Available online: https://repository.udistrital.edu.co/bitstream/handle/11349/5703/QuirogaVelascoLuisFelipe2017.pdf?sequence=1&isAllowed=y (accessed on 15 May 2025).
- Mesa de Conversaciones, Acuerdo Final Para La Terminación Del Conflicto y La Construcción de Una Paz Estable y Duradera. Available online: https://www.jep.gov.co/Documents/Acuerdo%20Final/Acuerdo%20Final%20Firmado.pdf (accessed on 15 May 2025).
- McGreevey, W.P. Historia Económica de Colombia, 1845–1930; Universidad de Los Andes: Bogotá, Colombia, 2017; Available online: https://economia.uniandes.edu.co/publicaciones/libros/historia-economica-de-colombia-1845-1930 (accessed on 5 June 2025).
- Agronet Inicio. Available online: https://www.agronet.gov.co/Paginas/inicio.aspx (accessed on 2 April 2025).
- Campos-Vega, R.; Nieto-Figueroa, K.H.; Oomah, B.D. Cocoa (Theobroma cacao L.) Pod Husk: Renewable Source of Bioactive Compounds. Trends Food Sci. Technol. 2018, 81, 172–184. [Google Scholar] [CrossRef]
- Porto de Souza Vandenberghe, L.; Kley Valladares-Diestra, K.; Amaro Bittencourt, G.; Fátima Murawski de Mello, A.; Sarmiento Vásquez, Z.; Zwiercheczewski de Oliveira, P.; Vinícius de Melo Pereira, G.; Ricardo Soccol, C. Added-Value Biomolecules’ Production from Cocoa Pod Husks: A Review. Bioresour. Technol. 2022, 344, 126252. [Google Scholar] [CrossRef]
- Dahunsi, S.O. Mechanical Pretreatment of Lignocelluloses for Enhanced Biogas Production: Methane Yield Prediction from Biomass Structural Components. Bioresour. Technol. 2019, 280, 18–26. [Google Scholar] [CrossRef]
- Lu, F.; Rodriguez-Garcia, J.; Van Damme, I.; Westwood, N.J.; Shaw, L.; Robinson, J.S.; Warren, G.; Chatzifragkou, A.; McQueen Mason, S.; Gomez, L.; et al. Valorisation Strategies for Cocoa Pod Husk and Its Fractions. Curr. Opin. Green. Sustain. Chem. 2018, 14, 80–88. [Google Scholar] [CrossRef]
- Fernández Escobar, Á.O.; Erazo Solórzano, C.Y.; Torres Segarra, C.V.; Tuárez García, D.A.; Torres Navarrete, E.D.; Díaz Ocampo, R.G. Extracción de Mucílago de Cáscara de Theobroma cacao L. Para Uso En Clarificación de Jugos de Saccharum Officinarum. Cienc. Tecnol. 2022, 15, 25. [Google Scholar] [CrossRef]
- Grassia, M.; Messia, M.C.; Marconi, E.; Demirkol, Ş.; Erdoğdu, F.; Sarghini, F.; Cinquanta, L.; Corona, O.; Planeta, D. Microencapsulation of Phenolic Extracts from Cocoa Shells to Enrich Chocolate Bars. Plant Foods Hum. Nutr. 2021, 76, 449–457. [Google Scholar] [CrossRef]
- Rojo-Poveda, O.; Zeppa, G.; Ferrocino, I.; Stévigny, C.; Barbosa-Pereira, L. Chemometric Classification of Cocoa Bean Shells Based on Their Polyphenolic Profile Determined by Rp-Hplc-Pda Analysis and Spectrophotometric Assays. Antioxidants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Antwi, E.; Engler, N.; Nelles, M.; Schüch, A. Anaerobic Digestion and the Effect of Hydrothermal Pretreatment on the Biogas Yield of Cocoa Pods Residues. Waste Manag. 2019, 88, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Quezada, J.P. Evaluación Energética De Cáscaras De Cacao Nacional Y CCN 51; Universidad de Cuenca: Cuenca, Ecuador, 2013; Available online: https://dspace.ucuenca.edu.ec/bitstream/123456789/4508/1/tesis.pdf (accessed on 2 April 2025).
- Wickramasuriya, A.M.; Dunwell, J.M. Cacao Biotechnology: Current Status and Future Prospects. Plant Biotechnol. J. 2018, 16, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, D.; Pound, B.; Nelson, V.; Kajman, G.; Cabascango, D.; Martin, A.; Chile, M.; Posthumus, H.; Caza, G.; Mejia, I.; et al. Assessing the Poverty Impact of Sustainability Standards: Ecuadorian Cocoa; ResearchGate: Berlin, Germany, 2013. [Google Scholar]
- Sánchez, V.H.; Zambrano, J.L.; Iglesias, C. La Cadena Del Valor Del Cacao En América Latina y El Caribe; INIAP, Estación Experimental Santa Catalina: Quito, Ecuador, 2019; ISBN 9789942364654. [Google Scholar]
- Mudombi, S.; Von Maltitz, G.P.; Gasparatos, A.; Romeu-Dalmau, C.; Johnson, F.X.; Jumbe, C.; Ochieng, C.; Luhanga, D.; Lopes, P.; Balde, B.S.; et al. Multi-Dimensional Poverty Effects around Operational Biofuel Projects in Malawi, Mozambique and Swaziland. Biomass Bioenergy 2018, 114, 41–54. [Google Scholar] [CrossRef]
- CONGRESO, D.E.C. Ley 1715 de 2014—Gestor Normativo—Función Pública 2014, 32. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353 (accessed on 5 April 2025).
- Mesa Puyo, D. Transición Energética: Un Legado Para El Presente y El Futuro de Colombia Iván Duque Márquez Presidente de La República. 2021. Available online: https://www.minenergia.gov.co/documents/5856/TRANSICION_ENERGETICA_COLOMBIA_BID-MINENERGIA-2403.pdf (accessed on 5 April 2025).
- SANDRA. Producción de Cacao En Ecuador y Su Impacto Económico—Del Monte AG 2025. Available online: https://delmonteag.com.ec/produccion-de-cacao-en-ecuador-y-su-impacto-economico/ (accessed on 12 April 2025).
- Elias Velasquez, P.; Acevedo, P.; Santis, A.; Bardone, E.; Marzocchella, A.; Bravi, M.; Rojas, J.C.; Ramírez, K.G.; Velasquez, P.E. Evaluation of Bio-Hydrogen Production by Dark Fermentation from Cocoa Waste Mucilage. Chem. Eng. Trans. 2020, 79, 2020. [Google Scholar] [CrossRef]
- Rasimphi, T.; Kilonzo, B.; Tinarwo, D.; Nyamukondiwa, P. Challenges, Opportunities, and Possible Interventions in the Biogas Sector in Rural Areas of Limpopo, South Africa. Energy Strategy Rev. 2024, 56, 101562. [Google Scholar] [CrossRef]
- Johnson, F.X.; Matsika, E. Bio-Energy Trade and Regional Development: The Case of Bio-Ethanol in Southern Africa. Energy Sustain. Dev. 2006, 10, 42–53. [Google Scholar] [CrossRef]
- Achterbosch, T.; Gerdien, M.; Slingerland, M.; Smeets, E. Combining Bioenergy Production and Food Security; Netherlands, 2013; NL Agency. Available online: https://edepot.wur.nl/260061 (accessed on 12 April 2025).
- Johnson, F.X.; Silveira, S. Pioneer Countries in the Transition to Alternative Transport Fuels: Comparison of Ethanol Programmes and Policies in Brazil, Malawi and Sweden. Environ. Innov. Soc. Transit. 2014, 11, 1–24. [Google Scholar] [CrossRef]
- Jarzebski, M.P.; Ahmed, A.; Boafo, Y.A.; Balde, B.S.; Chinangwa, L.; Saito, O.; von Maltitz, G.; Gasparatos, A. Food Security Impacts of Industrial Crop Production in Sub-Saharan Africa: A Systematic Review of the Impact Mechanisms. Food Secur. 2020, 12, 105–135. [Google Scholar] [CrossRef]
- Huang, X.; Wang, S.; Shi, Z.; Fang, L.; Yin, C. Challenges and Strategies for Biogas Production in the Circular Agricultural Waste Utilization Model: A Case Study in Rural China. Energy 2022, 241, 122889. [Google Scholar] [CrossRef]
- Atmowidjojo, A.C.; Harun, R.; Setyabudi, F.M.C.S.; Utami, A.W.; Idrus, S. Anaerobic Digestion Potential of Cocoa Pod Husk and Cocoa Bean Shell: Case of Gunung Kidul, Indonesia. Adv. Biol. Sci. Res. 2023, 29, 560–576. [Google Scholar] [CrossRef]
- Mancini, G.; Papirio, S.; Lens, P.N.L.; Esposito, G. Anaerobic Digestion of Lignocellulosic Materials Using Ethanol-Organosolv Pretreatment. Environ. Eng. Sci. 2018, 35, 953–960. [Google Scholar] [CrossRef]
- Gonzalez-Cabra, A.; Suarez-Muñoz, F. Potencial de Producción de Biometano y Biohidrógeno a Partir de Residuos Agrícolas: Mucílago de Café Y Cacao Y Estiércol de Cerdo; Universidad Santo Tomás: Manila, Philippines, 2018; Available online: https://bibliotecadigital.oducal.com/Record/ir-11634-15305?sid=4469 (accessed on 12 April 2025).
- Cortes, T.R.; Cuervo-Parra, J.A.; Robles-Olvera, V.J.; Cortes, E.R.; Pérez, P.A.L. Experimental and Kinetic Production of Ethanol Using Mucilage Juice Residues from Cocoa Processing. Int. J. Chem. React. Eng. 2018, 16, 20170262. [Google Scholar] [CrossRef]
- Maleka, D. Assessment of the Implementation of Alternative Process Technologies for Rural Heat and Power Production from Cocoa Pod Husks. 2016. Available online: https://kth.diva-portal.org/smash/get/diva2:946287/FULLTEXT01.pdf; (accessed on 18 April 2025).
- Moreno, M.S.L. Utilización de Los Subproductos Del Beneficio Del Cacao: Una Revisión; Universidad de Bogotá Jorge Tadeo Lozano: Bogotá, Colombia, 2020; Available online: http://hdl.handle.net/20.500.12010/18805 (accessed on 5 April 2025).
- Jameel, M.K.; Mustafa, M.A.; Ahmed, H.S.; Jassim Mohammed, A.; Ghazy, H.; Shakir, M.N.; Lawas, A.M.; Khudhur Mohammed, S.; Idan, A.H.; Mahmoud, Z.H.; et al. Biogas: Production, Properties, Applications, Economic and Challenges: A Review. Results Chem. 2024, 7, 101549. [Google Scholar] [CrossRef]
- Naciones Unidas. Incentivos y Oportunidades En El Marco Regulatorio Para El Aprovechamiento Energético Del Biogás Producido En Plantas de Tratamiento de Aguas Residuales En Países Seleccionados de América Latina y El Caribe. 2024. Available online: https://www.cepal.org/es/publicaciones/80404-incentivos-oportunidades-marco-regulatorio-aprovechamiento-energetico-biogas (accessed on 5 June 2025).
- Mansur, D.; Tago, T.; Masuda, T.; Abimanyu, H. Conversion of Cacao Pod Husks by Pyrolysis and Catalytic Reaction to Produce Useful Chemicals. Biomass Bioenergy 2014, 66, 275–285. [Google Scholar] [CrossRef]
- Scheuer, P.M.; Southgate, A.N.N.; Martelli, M.F.; Dias, C.; da Silva, M.E.; Coelho, A.A.; de Francisco, A. Quality Properties of a Bread Made with Levain and Cocoa Waste. J. Culin. Sci. Technol. 2022, 20, 409–420. [Google Scholar] [CrossRef]
Residue | % Residue (Wet Basis) | Cacao Production (Wet Basis) in 2007 and 2019 [ton] | Residue Production (Wet Basis) in 2007 and 2019 [ton] |
---|---|---|---|
Cocoa bean shell (CBS) | 14.5 | 26,420–58,960 | |
Mucilage (CM) | 12.6 | 23,000–51,280 | |
Cocoa pod husk (CPH) | 72.9 | 133,200–297,200 | |
Total | 100.0 | 18,260–40,740 | 182,600–407,400 |
Yield | Operation Conditions | Biofuel Use Comments | Ref. |
---|---|---|---|
Using the SMP (Specific Methane Production) values and based on 10,000 kg wet weight substrate samples, the electrical potential was estimated to be in the range of 1192–1284 kWh. | N/A | Different studies have emphasized that CPH is a potential biomass resource for further valorization into bioenergy and biobased products with the biorefinery approach. Ghysels et al., for example, claimed that the combination of AD with slow pyrolysis technology generated not only biogas but also biochar and biooil. | [27] |
20–25% by weight of biogas for mono-digestion and co-digestion. Direct pyrolysis of CPH produced 48% by weight of biochar. | Co-AD was evaluated using a 3:1 ratio of CPH and cow manure (volatile solids), 117 days, 400 mL of functional volume, mesophilic conditions (35 °C), and an increase in organic load from 1 to 4 VSS/L per day. With those conditions, a significant improvement in biogas production was observed. | Production of biogas was for the mono-digestion of 21% by weight with a composition of 54 ± 24% CH4 and for co-AD of 25% by weight and 60% by volume of CH4. | [36] |
Given its high lignocellulosic content, CPH is difficult to break down for bacteria; therefore, it is necessary to pre-treat to allow its use as a substrate for biogas production through AD. Pre-treatment improved digestion rate, obtaining up to 71% biogas yield. | Pretreatment using Pleurotus Ostreatus cepa for 28 days, with results comparable with those obtained with chemical (acid) pretreatment. | Obtention of fertilizers using the structural characteristics of the residues, use of residues in sanitary field, antioxidants, biofuels such as biogas, ethanol, methanol, biodiesel, and solid fuels. | [53] |
357 L(N)/kgVS; 55% methane content. | Temperature of 40 °C, biodigesters were connected to gas holders and kept at 40 °C during 70 days of AD using two cocoa varieties. Inoculum was used, sludge from an AD biodigester of bovine manure. | N/A | [81] |
650 L(N)/kgVS. Production of biogas reached its maximum around day 11, being higher for the case of CPH treated with H2O2 reaching 600 L/kgVS. | Temperature 100 °C, co-AD using CPH and chicken manure as co-substrate during a 30-day retention period. | Direct sale to consumers as methane content was between 63 and 66% and/or injection into the electricity grid. The purification of biogas was not discussed in the paper. | [104] |
Yield | Operation Conditions | Biofuel Use Comments | Ref. |
---|---|---|---|
Biogas yield was 21% ± 3.6% by weight after the monodigestion | Monodigestion of cocoa residues and co-digestion with cow dung using a temperature of 350 °C and 500 °C. | N/A | [36] |
CBS is a lignocellulosic residue. Pretreatment conditions used were 3 h and 120 °C. Specific methane yield was 226 ± 27.0 L CH4/kg VS | Production for 40 days using batch tests under controlled mesophilic conditions. Biomethane production was measured by the water displacement method, and the inoculum was collected from a large-scale AD plant that treats buffalo manure and whey generated from a mozzarella factory. | Biomethane produced was converted to thermal energy, 0.840 kWh/kg VS, with a conversion efficiency of 50%. The heat energy required in the pretreatment unit was equal to 1.231 kWh/kg VS, which produced a negative value of −0.391 kWh/kg VS. | [76] |
N/A | The bovine manure presents a composition that allows the definition of the initial concentrations of substrate in the process. The initial concentrations of bacteria in cattle manure are small, approximately 0.01 g/L for acidogenic and acetogenic bacteria and 0.001 g/L for methanogenic bacteria. The concentration of cocoa shell is 30 g/L. | Biogas produced in biodigesters can be used as a source of heat or electricity generation in any of the following uses: (i) generation of heat or electricity in a boiler; (ii) electricity generation in motors or turbines; (iii) production of liquefied natural gas or methanol; and (iv) vehicle fuel. | [97] |
N/A | Biogas production required a minimum time of 15 days. Carbon and nitrogen are the main sources of food for methane-forming bacteria. Operation variables such as pH 7, temperature 35 °C, stirring nutrients of 1% in the mix, particle size, and atmospheric pressure, 0.740 atm, remained constant in this investigation. | Biogas would be the most advisable for domestic use in the marginal sectors of the coast and the east of Ecuador, where farmers do not have the possibility of accessing continuous gas service liquefied petroleum (LPG). | [105] |
The highest methane yield was obtained by a sample composed of manure (60%), milk sludge (35%), and CBS (5%) and produced 32.5 L CH4/kg sample. | Four typical organic residues were tested to determine their potential methane yield: CBS, cheese whey, dairy sludge, and dairy manure. Anaerobic inoculum was collected from a pilot CSTR digester that processed the screened liquid fraction of dairy manure. | Sludge collected in the grease separation facilities presented high specific methane yields, between 350 and 388 L CH4/kg VS. Despite low methane yields, the anaerobic codigestion of organic waste from the dairy industry would be a good management strategy. | [106] |
Yield | Operation Conditions | Biofuel Use Comments | Ref. |
---|---|---|---|
N/A | The best carbon-to-nitrogen C/N ratio for the anaerobic digestion process is 20–30. Temperature work under mesophilic conditions: 20–45 °C. pH: Methanogens work efficiently between pH values of 6.5–8.2, reaching their optimal development with a pH of 7. | Captured and used for the generation of energy (as heat or as power) and liquid fertilizer. | [80] |
Maximum methane yields of 636 NmLCH4/g were obtained. | The semicontinuous biogas evaluation was carried out through the operation of two ASBR-type reactors. Biodigesters made of PVC with a total volume of 6 L were used, leaving a head space of 1 L. The biodigesters were operated at a room temperature of approximately 30 °C. The MC had a humidity of 92.63%. | N/A | [97] |
For AD 433–459 L of biogas/kg COD (total organic load) with a CH4 content of 70%, respectively. Dark fermentation (DF) was evaluated as a second operation, and the production of biogas ranged from 602 to 864 L of biogas/kg COD with CH4 (25–51%), CO2 (30–35%), and H2 (17–40%). | Reactors were operated under mesophilic temperature (35 °C), and the inoculum used for experiments (AD and DF) was obtained from a wastewater treatment plant of a dairy company that was pretreated via a heat shock (30 min at 100 °C). | The increase in the rearing of pork, coffee, and cocoa suggests an interesting potential market for the valorization of organic substrates. However, fluctuation in the production of these residual biomasses may represent a weakness for the perspective evaluations. A periodic update of the input data for the models is necessary to better follow the dynamics of future production. | [105] |
Residue | % Residue (Wet Basis) | Yield Biogas Production (m3/ton of Residue) | Ref. |
---|---|---|---|
Cocoa bean shell (CBS) | 14.50 | 279.0 | [81] |
Mucilage (CM) | 12.60 | 490.0 | [53,78] |
Cocoa pod husk (CPH) | 72.90 | 306.85 | [71,87] |
[76] | |||
Total | 100.0 |
Residue Production (Wet Basis) [ton] | Annual Biogas Potential Production (106 m3) | Daily Biogas Potential Production (103 m3) | Daily Methane Potential Production (103 m3) | Daily Electricity Potential Production (MWh) | Inhabitants to Be Supplied |
---|---|---|---|---|---|
CBS: 26,420 | 7.37 | 20.19 | 11.31 | 141.40 | |
CM: 22,980 | 11.26 | 30.85 | 17.28 | 215.90 | |
CPH: 133,200 | 54.02 | 148.0 | 82.87 | 1036 | |
Total: 182,600 | 72.65 | 199.0 | 111.50 | 1393 | 360,000 |
Residue Production (Wet Basis) [ton] | Annual Biogas Potential Production (106 m3) | Daily Biogas Potential Production (103 m3) | Daily Methane Potential Production (103 m3) | Daily Electricity Potential Production (MWh) | Inhabitants to Be Supplied |
---|---|---|---|---|---|
CBS: 58,960 | 16.45 | 45.07 | 25.24 | 315.50 | |
CM: 51,280 | 25.13 | 68.85 | 38.55 | 481.9 | |
CPH: 297,200 | 120.50 | 330.30 | 185.0 | 2312 | |
Total: 407,400 | 162.10 | 444.20 | 248.70 | 3109 | 803,400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos-Arcos, C.; Caicedo-Concha, D.M.; Coz, A.; Llano, T.; Colmenares-Quintero, J.C.; Colmenares-Quintero, R.F. Assessment of the Potential for Biogas Production in Post-Conflict Rural Areas in Colombia Using Cocoa Residues. Energies 2025, 18, 3091. https://doi.org/10.3390/en18123091
Burgos-Arcos C, Caicedo-Concha DM, Coz A, Llano T, Colmenares-Quintero JC, Colmenares-Quintero RF. Assessment of the Potential for Biogas Production in Post-Conflict Rural Areas in Colombia Using Cocoa Residues. Energies. 2025; 18(12):3091. https://doi.org/10.3390/en18123091
Chicago/Turabian StyleBurgos-Arcos, Carlos, Diana M. Caicedo-Concha, Alberto Coz, Tamara Llano, Juan Carlos Colmenares-Quintero, and Ramón Fernando Colmenares-Quintero. 2025. "Assessment of the Potential for Biogas Production in Post-Conflict Rural Areas in Colombia Using Cocoa Residues" Energies 18, no. 12: 3091. https://doi.org/10.3390/en18123091
APA StyleBurgos-Arcos, C., Caicedo-Concha, D. M., Coz, A., Llano, T., Colmenares-Quintero, J. C., & Colmenares-Quintero, R. F. (2025). Assessment of the Potential for Biogas Production in Post-Conflict Rural Areas in Colombia Using Cocoa Residues. Energies, 18(12), 3091. https://doi.org/10.3390/en18123091