Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Prandtl Number
3.2. Convection Dynamics Analysis
3.3. Heat Transfer Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NP | Nanoparticle |
MWCNT | Multi-Walled Carbon Nanotube |
XRD | X-Ray Diffraction |
LBM | Lattice Boltzmann method |
EG | Ethylene glycol |
BDF | Backward differentiation formula |
References
- Semenova, E.M.; Vorobyova, S.A.; Lesnikovich, A.I.; Fedotova, J.A.; Bayev, V.G. Fabrication and Investigation of Magnetite Nanoparticles with Gold Shell. J. Alloys Compd. 2012, 530, 97–101. [Google Scholar] [CrossRef]
- Maximenko, A.; Depciuch, J.; Łopuszyńska, N.; Stec, M.; Światkowska-Warkocka, Ż.; Bayev, V.; Zieliński, P.M.; Baran, J.; Fedotova, J.; Węglarz, W.P.; et al. Fe3 O4 @SiO2 @Au Nanoparticles for MRI-Guided Chemo/NIR Photothermal Therapy of Cancer Cells. RSC Adv. 2020, 10, 26508–26520. [Google Scholar] [CrossRef] [PubMed]
- Philip, J. Magnetic Nanofluids (Ferrofluids): Recent Advances, Applications, Challenges, and Future Directions. Adv. Colloid Interface Sci. 2023, 311, 102810. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.D.; Tran, H.-V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Pacio, J. 3—Thermal-Hydraulic Experiments with Liquid Metals—Introduction. In Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors; Roelofs, F., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 45–47. ISBN 978-0-08-101980-1. [Google Scholar]
- Li, Y.; Liu, F.; Li, X.; Jin, H. Flow and Heat Transfer Characteristics of Natural Convection in Hydrothermal Reactor with Segmented Heating. Appl. Therm. Eng. 2023, 227, 120451. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, M.; Jiang, M. Mathematical Modeling for Convection-Enhanced Drug Delivery. Procedia Eng. 2012, 29, 268–274. [Google Scholar] [CrossRef]
- Vallejo, J.P.; Prado, J.I.; Lugo, L. Hybrid or Mono Nanofluids for Convective Heat Transfer Applications. A Critical Review of Experimental Research. Appl. Therm. Eng. 2022, 203, 117926. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A Review on Thermophysical Properties of Nanofluids and Heat Transfer Applications. Renew. Sustain. Energy Rev. 2017, 74, 638–670. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66. [Google Scholar]
- Kalsi, S.; Kumar, S.; Kumar, A.; Alam, T.; Dobrotă, D. Thermophysical Properties of Nanofluids and Their Potential Applications in Heat Transfer Enhancement: A Review. Arab. J. Chem. 2023, 16, 105272. [Google Scholar] [CrossRef]
- Faraz, N.; Shemyal Nisar, M.; Khan, Y.; Hussain, A.; Iqbal, K. Natural Convection of Cu-H2O Nanofluid inside Hexagonal Enclosure Fitted with a Square Cavity with a Non-Uniformly Heated Wall(s). Results Phys. 2023, 51, 106648. [Google Scholar] [CrossRef]
- Liang, Q.; Valizadeh, K.; Bateni, A.; Patra, I.; Abdul-Fattah, M.N.; Kandeel, M.; Zahra, M.M.A.; Bashar, B.S.; Baghaei, S.; Esmaeili, S. The Effect of Type and Size of Nanoparticles and Porosity on the Pool Boiling Heat Transfer of Water/Fe Nanofluid: Molecular Dynamics Approach. J. Taiwan Inst. Chem. Eng. 2022, 136, 104409. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, Z.; He, L.; Huang, X. Atomization Characteristics of Nano-Al/Ethanol Nanofluid Fuel in Electrostatic Field. Fuel 2019, 236, 811–819. [Google Scholar] [CrossRef]
- Chun, S.-Y.; Bang, I.C.; Choo, Y.-J.; Song, C.-H. Heat Transfer Characteristics of Si and SiC Nanofluids during a Rapid Quenching and Nanoparticles Deposition Effects. Int. J. Heat Mass Transf. 2011, 54, 1217–1223. [Google Scholar] [CrossRef]
- Hemmat Esfe, M.; Alidoust, S.; Toghraie, D. Comparison of Thermal Conductivity of Water-Based Nanofluids with Various Combinations of MWCNT, CuO, and SiO2 Nanoparticles for Using in Heating Systems. Case Stud. Therm. Eng. 2023, 42, 102683. [Google Scholar] [CrossRef]
- Kumar, N.; Sonawane, S.S. Experimental Study of Fe2O3/Water and Fe2O3/Ethylene Glycol Nanofluid Heat Transfer Enhancement in a Shell and Tube Heat Exchanger. Int. Commun. Heat Mass Transf. 2016, 78, 277–284. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Gao, H.; Yan, Y. Experimental Study of Viscosity and Thermal Conductivity of Water Based Fe3O4 Nanofluid with Highly Disaggregated Particles. Case Stud. Therm. Eng. 2022, 35, 102160. [Google Scholar] [CrossRef]
- Ajeeb, W.; Thieleke da Silva, R.R.S.; Murshed, S.M.S. Experimental Investigation of Heat Transfer Performance of Al2O3 Nanofluids in a Compact Plate Heat Exchanger. Appl. Therm. Eng. 2023, 218, 119321. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Manasrah, A.D.; Al-Mubaiyedh, U.A.; Al-Ansari, T.; Malaibari, Z.O.; Atieh, M.A. An Experimental Study on Stability and Thermal Conductivity of Water/CNTs Nanofluids Using Different Surfactants: A Comparison Study. J. Mol. Liq. 2020, 304, 111025. [Google Scholar] [CrossRef]
- Lin, H.; Jian, Q.; Bai, X.; Li, D.; Huang, Z.; Huang, W.; Feng, S.; Cheng, Z. Recent Advances in Thermal Conductivity and Thermal Applications of Graphene and Its Derivatives Nanofluids. Appl. Therm. Eng. 2023, 218, 119176. [Google Scholar] [CrossRef]
- Aswarthanarayana, S.; Rajan, A.; Raj, R.; Ranjan, G.; Prasad, L. Investigation of Thermal Properties of Graphene-Silicone Oil Nanofluid. Mater. Today Proc. 2023, 76, 376–382. [Google Scholar] [CrossRef]
- Fan, W.; Zhong, F. Experimental Study on Thermal Conductivity of Kerosene-Based Nanofluids. Thermochim. Acta 2022, 712, 179229. [Google Scholar] [CrossRef]
- Arafat, R.; Köhn, C.; Jean-Fulcrand, A.; Abraham, T.; Garnweitner, G.; Herrmann, C. Physical-Chemical Properties and Tribological Characterization of Water-Glycerine Based Metal Oxide Nanofluids. J. Mater. Res. Technol. 2023, 25, 2112–2126. [Google Scholar] [CrossRef]
- Bao, L.; Zhong, C.; Jie, P.; Hou, Y. The Effect of Nanoparticle Size and Nanoparticle Aggregation on the Flow Characteristics of Nanofluids by Molecular Dynamics Simulation. Adv. Mech. Eng. 2019. [Google Scholar] [CrossRef]
- Wei, Y.; Han, B.; Hu, X.; Lin, Y.; Wang, X.; Deng, X. Synthesis of Fe3O4 Nanoparticles and Their Magnetic Properties. Procedia Eng. 2012, 27, 632–637. [Google Scholar] [CrossRef]
- Rajan, A.; Sharma, M.; Sahu, N.K. Assessing Magnetic and Inductive Thermal Properties of Various Surfactants Functionalised Fe3O4 Nanoparticles for Hyperthermia. Sci. Rep. 2020, 10, 15045. [Google Scholar] [CrossRef]
- Santoyo Salazar, J.; Perez, L.; de Abril, O.; Truong Phuoc, L.; Ihiawakrim, D.; Vazquez, M.; Greneche, J.-M.; Begin-Colin, S.; Pourroy, G. Magnetic Iron Oxide Nanoparticles in 10−40 Nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties. Chem. Mater. 2011, 23, 1379–1386. [Google Scholar] [CrossRef]
- Jang, S.P.; Choi, S.U.S. Free Convection in a Rectangular Cavity (Benard Convection) with Nanofluids. In Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; Volume 3, pp. 147–153. [Google Scholar]
- Putra, N.; Roetzel, W.; Das, S.K. Natural Convection of Nano-Fluids. Heat Mass Transf. 2003, 39, 775–784. [Google Scholar] [CrossRef]
- Ruo, A.-C.; Yan, W.-M.; Chang, M.-H. The Onset of Natural Convection in a Horizontal Nanofluid Layer Heated from Below. Heat Transf. 2021, 50, 7764–7783. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Magnetic Source Impact on Nanofluid Heat Transfer Using CVFEM. Neural Comput. Appl. 2018, 30, 1055–1064. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ellahi, R.; Vafai, K. Study of Fe3O4-Water Nanofluid with Convective Heat Transfer in the Presence of Magnetic Source. Alex. Eng. J. 2018, 57, 565–575. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, C. Lattice Boltzmann Study on Magnetohydrodynamic Double-Diffusive Convection in Fe3O4–H2O Nanofluid-Filled Porous Media. Case Stud. Therm. Eng. 2024, 58, 104405. [Google Scholar] [CrossRef]
- Weng, L.; Rahmani, A.; Mohammad Sajadi, S.; Kumar, A.; Ulloa, N.; Firas Abdulameer, S.; Alawadi, A.; Alsalamy, A.; Salahshour, S.; Zarringhalam, M.; et al. Simulation of Natural Convection of Nanofluid inside a Square Cavity Using Experimental Data by Lattice Boltzmann Method. Ain Shams Eng. J. 2024, 15, 102711. [Google Scholar] [CrossRef]
- Li, L.; Xu, P.; Li, Q.; Zheng, R.; Xu, X.; Wu, J.; He, B.; Bao, J.; Tan, D. A Coupled LBM-LES-DEM Particle Flow Modeling for Microfluidic Chip and Ultrasonic-Based Particle Aggregation Control Method. Appl. Math. Model. 2025, 143, 116025. [Google Scholar] [CrossRef]
- Li, L.; Xu, P.; Li, Q.; Yin, Z.; Zheng, R.; Wu, J.; Bao, J.; Bai, W.; Qi, H.; Tan, D. Multi-Field Coupling Particle Flow Dynamic Behaviors of the Microreactor and Ultrasonic Control Method. Powder Technol. 2025, 454, 120731. [Google Scholar] [CrossRef]
- Tan, Y.; Ni, Y.; Xu, W.; Xie, Y.; Li, L.; Tan, D. Key Technologies and Development Trends of the Soft Abrasive Flow Finishing Method. J. Zhejiang Univ. -Sci. A 2023, 24, 1043–1064. [Google Scholar] [CrossRef]
- Xu, P.; Li, Q.; Wang, C.; Li, L.; Tan, D.; Wu, H. Interlayer Healing Mechanism of Multipath Deposition 3D Printing Models and Interlayer Strength Regulation Method. J. Manuf. Process. 2025, 141, 1031–1047. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Thi, N.H.; Afrand, M. A Review on the Role of Molecular Dynamics in Discovering Behaviors, Heat Transfer, and Properties of Nanofluids. J. Mol. Liq. 2024, 415, 126238. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Abosinnee, A.S.; Al-Hadraawy, S.K.; Ismael, M.A.; Fteiti, M.A.; Hashim, I.; Sheremet, M.; Ghalambaz, M.; Chamkha, A.J. Convection Heat Transfer in Enclosures with Inner Bodies: A Review on Single and Two-Phase Nanofluid Models. Renew. Sustain. Energy Rev. 2023, 183, 113424. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids. Int. J. Heat Mass Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Roy, N.C. Natural Convection of Nanofluids in a Square Enclosure with Different Shapes of Inner Geometry. Phys. Fluids 2018, 30, 113605. [Google Scholar] [CrossRef]
- Nnanna, A.G.A.; Fistrovich, T.; Malinski, K.; Choi, S.U.S. Thermal Transport Phenomena in Buoyancy-Driven Nanofluids. In Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, CA, USA, 13–19 November 2004; pp. 571–578. [Google Scholar]
- Joshi, P.S.; Pattamatta, A. Buoyancy Induced Convective Heat Transfer in Particle, Tubular and Flake Type of Nanoparticle Suspensions. Int. J. Therm. Sci. 2017, 122, 1–11. [Google Scholar] [CrossRef]
- Pazarlioğlu, H.K.; TekiR, M. Impact of Fe3O4/Water on Natural Convection in Square Enclosure. Eur. J. Sci. Technol. 2021, 675–683. [Google Scholar] [CrossRef]
- Kamran, M.; Qayoum, A. Experimental Investigation of Natural Convection of Fe3O4-Water Nanofluid in a Cubic Cavity. J. Dispers. Sci. Technol. 2024, 45, 651–661. [Google Scholar] [CrossRef]
- Alami, A.H.; Ramadan, M.; Tawalbeh, M.; Haridy, S.; Al Abdulla, S.; Aljaghoub, H.; Ayoub, M.; Alashkar, A.; Abdelkareem, M.A.; Olabi, A.G. A Critical Insight on Nanofluids for Heat Transfer Enhancement. Sci. Rep. 2023, 13, 15303. [Google Scholar] [CrossRef]
- Pandey, A.; Scheel, J.D.; Schumacher, J. Turbulent Superstructures in Rayleigh-Bénard Convection. Nat. Commun. 2018, 9, 2118. [Google Scholar] [CrossRef]
- Pesch, W. Complex Spatiotemporal Convection Patterns. Chaos Interdiscip. J. Nonlinear Sci. 1996, 6, 348–357. [Google Scholar] [CrossRef]
- Dillon, H.E. Dimensionless versus Dimensional Analysis in CFD and Heat Transfer. In Proceedings of the COMSOL Conference, Boston, MA, USA, 7–9 October 2010. [Google Scholar]
- Schumacher, J.; Bandaru, V.; Pandey, A.; Scheel, J.D. Transitional Boundary Layers in Low-Prandtl-Number Convection. Phys. Rev. Fluids 2016, 1, 084402. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Sun, C. Statistics of Kinetic and Thermal Energy Dissipation Rates in Two-Dimensional Turbulent Rayleigh–Bénard Convection. J. Fluid Mech. 2017, 814, 165–184. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Q.; Sun, C. Vibration-Induced Boundary-Layer Destabilization Achieves Massive Heat-Transport Enhancement. Sci. Adv. 2020, 6, eaaz8239. [Google Scholar] [CrossRef]
- Guermond, J.L.; Minev, P.; Shen, J. An Overview of Projection Methods for Incompressible Flows. Comput. Methods Appl. Mech. Eng. 2006, 195, 6011–6045. [Google Scholar] [CrossRef]
- Pallares, J.; Cuesta, I.; Grau, F.X. Laminar and Turbulent Rayleigh–Bénard Convection in a Perfectly Conducting Cubical Cavity. Int. J. Heat Fluid Flow 2002, 23, 346–358. [Google Scholar] [CrossRef]
- Syam Sundar, L.; Singh, M.K.; Sousa, A.C.M. Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications. Int. Commun. Heat Mass Transf. 2013, 44, 7–14. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Krakov, M.S.; Zakinyan, A.R.; Zakinyan, A.A. Instability of the Miscible Magnetic/Non-Magnetic Fluid Interface. J. Fluid Mech. 2021, 913, A30. [Google Scholar] [CrossRef]
- Li, X.-M.; He, J.-D.; Tian, Y.; Hao, P.; Huang, S.-D. Effects of Prandtl Number in Quasi-Two-Dimensional Rayleigh–Bénard Convection. J. Fluid Mech. 2021, 915, A60. [Google Scholar] [CrossRef]
- Assenheimer, M.; Steinberg, V. Critical Phenomena in Hydrodynamics. Europhys. News 1996, 27, 143–147. [Google Scholar] [CrossRef]
- Xi, H.; Gunton, J.D.; Viñals, J. Spiral Defect Chaos in a Model of Rayleigh-Bénard Convection. Phys. Rev. Lett. 1993, 71, 2030–2033. [Google Scholar] [CrossRef]
- Fonda, E.; Pandey, A.; Schumacher, J.; Sreenivasan, K.R. Deep Learning in Turbulent Convection Networks. Proc. Natl. Acad. Sci. USA 2019, 116, 8667–8672. [Google Scholar] [CrossRef]
Volume Fraction φ, % | Density ρ, kg/m3 | Thermal Conductivity κ, W/m·K | Dynamic Viscosity μ, mPa·s | Kinematic Viscosity ν × 10−6, m2/s | Specific Heat Capacity Cp, J/kg·K | Thermal Diffusivity χ × 10−7, m2/s |
---|---|---|---|---|---|---|
0 | 999 | 0.602 | 0.79 | 0.79 | 4182 | 1.44 |
0.2 | 1008 | 0.652 | 0.84 | 0.83 | 4174 | 1.55 |
0.6 | 1027 | 0.690 | 1.01 | 0.98 | 4160 | 1.61 |
1 | 1046 | 0.730 | 1.44 | 1.38 | 4146 | 1.68 |
2 | 1095 | 0.753 | 1.65 | 1.51 | 4111 | 1.67 |
Volume Fraction φ, % | Density ρ, kg/m3 | Thermal Conductivity κ, W/m·K | Dynamic Viscosity μ, mPa·s | Kinematic Viscosity ν × 10−6, m2/s | Specific Heat Capacity Cp, J/kg·K | Thermal Diffusivity χ × 10−7, m2/s |
---|---|---|---|---|---|---|
0 | 999 | 0.607 | 1.00 | 1.00 | 4182 | 1.45 |
0.2 | 1008 | 0.643 | 1.16 | 1.15 | 4174 | 1.53 |
0.6 | 1027 | 0.662 | 1.21 | 1.18 | 4160 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miadzvedzeva, M.; Fedotov, A.S.; Zur, I.; Fedotova, J. Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid. Energies 2025, 18, 2767. https://doi.org/10.3390/en18112767
Miadzvedzeva M, Fedotov AS, Zur I, Fedotova J. Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid. Energies. 2025; 18(11):2767. https://doi.org/10.3390/en18112767
Chicago/Turabian StyleMiadzvedzeva, Maryia, Alexander S. Fedotov, Ilya Zur, and Julia Fedotova. 2025. "Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid" Energies 18, no. 11: 2767. https://doi.org/10.3390/en18112767
APA StyleMiadzvedzeva, M., Fedotov, A. S., Zur, I., & Fedotova, J. (2025). Heat Transfer and Flow Dynamics for Natural Convection in Fe3O4/H2O Nanofluid. Energies, 18(11), 2767. https://doi.org/10.3390/en18112767