Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment
Abstract
:1. Introduction
2. Test Setup
2.1. Experimental Setup
2.2. Experimental Conditions
3. Results and Discussion
3.1. Energy Distribution
3.2. Analysis of Thermal Management System
3.2.1. Fuel Cell Thermal Management Subsystem
3.2.2. Warm Air Subsystem
3.2.3. Cabin Temperature Response
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, X.; Feng, L.; Liu, H.; Jiang, P.; Chen, C.; Sun, Z. Experimental investigation on exhaust emissions of a heavy-duty vehicle powered by a methanol-fuelled spark ignition engine under world Harmonized Transient Cycle and actual on-road driving conditions. Energy 2023, 282, 128869. [Google Scholar] [CrossRef]
- Aletras, N.; Broekaert, S.; Bitsanis, E.; Fontaras, G.; Samaras, Z.; Ntziachristos, L. Energy management algorithm based on average power demand prediction for plug-in hybrid electric trucks. Energy Convers. Manag. 2024, 299, 117785. [Google Scholar] [CrossRef]
- Burchart, D.; Przytuła, I. Review of Environmental Life Cycle Assessment for Fuel Cell Electric Vehicles in Road Transport. Energies 2025, 18, 1229. [Google Scholar] [CrossRef]
- Hegde, S.; Wörner, R.; Shabani, B. Automotive PEM fuel cell catalyst layer degradation mechanisms and characterisation techniques, Part I: Carbon corrosion and binder degradation. Int. J. Hydrogen Energy 2025, 118, 268–299. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Jiang, Y.; Dong, S.; Huang, R.; Liao, H.; Tang, S. Degradation analysis of dynamic voltage response characteristics of proton exchange membrane fuel cells for health evaluation under dynamic load. Appl. Energy 2025, 389, 125741. [Google Scholar] [CrossRef]
- Tan, X.; Sun, A.; Su, T. Enhanced electrochemical performance of proton exchange membrane fuel cell through optimal bolt configuration design. Appl. Energy 2025, 378, 124761. [Google Scholar] [CrossRef]
- Song, D.; Wu, Q.; Zeng, X.; Zhang, X.; Qian, Q.; Yang, D. An integrated thermal management system for fuel cell vehicles based on collaborative control. Appl. Therm. Eng. 2025, 264, 125500. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Togun, H.; Basem, A.; Abdulrazzaq, T.; Biswas, N.; Abed, A.M.; dhabab, J.M.; Chattopadhyay, A.; Slimi, K.; Paul, D.; Barmavatu, P.; et al. Development and comparative analysis between battery electric vehicles (BEV) and fuel cell electric vehicles (FCEV). Appl. Energy 2025, 388, 125726. [Google Scholar] [CrossRef]
- Yadav, S.; Assadian, F. Robust Energy Management of Fuel Cell Hybrid Electric Vehicles Using Fuzzy Logic Integrated with H-Infinity Control. Energies 2025, 18, 2107. [Google Scholar] [CrossRef]
- Oladosu, T.L.; Pasupuleti, J.; Kiong, T.S.; Koh, S.P.J.; Yusaf, T. Energy management strategies, control systems, and artificial intelligence-based algorithms development for hydrogen fuel cell-powered vehicles: A review. Int. J. Hydrogen Energy 2024, 61, 1380–1404. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, Y.; Yang, F.; Chen, B.; Ma, R.; Ma, R.; Jiang, W.; Bai, H. Speed-prediction-based hierarchical energy management and operating cost analysis for fuel cell hybrid logistic vehicles. Appl. Energy 2025, 390, 125843. [Google Scholar] [CrossRef]
- Yang, S.; Sun, H.; Liu, Z.; Deng, C.; Xie, N. Process modeling and analysis of a combined heat and power system integrating solid oxide fuel cell and organic Rankine cycle for poultry litter utilization. Appl. Therm. Eng. 2024, 236, 121897. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Wang, T.; Che, Z. Dynamic simulation and optimization of a residential proton exchange membrane fuel cell (PEMFC) combined heat and power (CHP) system. Energy 2025, 319, 134865. [Google Scholar] [CrossRef]
- Li, R.; Wu, Z.; Luo, J.; Zou, Z.; Huang, Y.; Zhou, X.; He, G. Development and validation of a 200 kW PEM fuel cell system with a novel PCM-integrated waste heat recovery strategy. J. Energy Storage 2025, 122, 116697. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Xiao, L.; Zhang, H. Unlocking the potentials using humidifier-dehumidifier for proton exchange membrane fuel cell waste heat recovery. Renew. Energy 2024, 237, 121571. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, C.; Zhou, C.; He, M. Waste heat utilization of low-temperature proton exchange membrane fuel cell refrigerated vehicle with integrated absorption-compression refrigeration system. Appl. Therm. Eng. 2025, 269, 126103. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, Y.; Kadam, S.; Yu, Z. A fuel cell range extender integrating with heat pump for cabin heat and power generation. Appl. Energy 2023, 348, 121600. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Kim, Y. Heating performance of a coolant-source heat pump using waste heat from stack and electric devices in fuel cell electric vehicles under cold conditions. Energy Convers. Manag. 2022, 252, 115092. [Google Scholar] [CrossRef]
- Park, Y.; Kim, J.; Oh, J.; Han, U.; Lee, H. Multi-objective optimization of an offset strip fin heat exchanger for waste heat recovery in electric vehicles. Appl. Therm. Eng. 2023, 228, 120533. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, X.; Jiang, W.; Wang, W.; Li, C.; Li, S. A coupling and multi-mode thermal management system design and control for high-power fuel cell vehicles with utilizing waste heat. Energy Convers. Manag. 2025, 328, 119590. [Google Scholar] [CrossRef]
- Colmenar-Santos, A.; Alberdi-Jiménez, L.; Nasarre-Cortés, L.; Mora-Larramona, J. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system. Energy 2014, 68, 182–190. [Google Scholar] [CrossRef]
- Campíñez-Romero, S.; Colmenar-Santos, A.; Pérez-Molina, C.; Mur-Pérez, F. A hydrogen refuelling stations infrastructure deployment for cities supported on fuel cell taxi roll-out. Energy 2018, 148, 1018–1031. [Google Scholar] [CrossRef]
- Sun, W.; Yi, F.; Hu, D.; Zhou, J. Research on matching design method of waste heat reuse system of fuel cell vehicle considering system energy consumption and waste heat exchange rate. Int. J. Energy Res. 2021, 45, 5470–5485. [Google Scholar] [CrossRef]
- Quan, R.; Yang, Z.; Qiu, Z.; Li, X.; Chang, Y. Thermal performance simulation and numerical analysis of a fuel cell waste heat utilization system for automotive application. Appl. Therm. Eng. 2024, 252, 123719. [Google Scholar] [CrossRef]
- Feng, R.; Yu, J.; Zhao, Z.; Hua, Z.; He, J.; Shu, X. Performance and energy-consumption evaluation of fuel-cell hybrid heavy-duty truck based on energy flow and thermal-management characteristics experiment under different driving conditions. Energy Convers. Manag. 2024, 321, 119084. [Google Scholar] [CrossRef]
- GB/T 27840-2021. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=CE1E6A1DD5B458F6E05397BE0A0A68DF (accessed on 28 April 2025).
Component | Item | Value |
---|---|---|
Vehicle | Curb weight | 9348 kg |
Loaded weight | 49,000 kg | |
Maximum speed | 92 km/h | |
Fuel cell system | Rated power | 117 kW |
Peak power | 125 kW | |
Response speed | 30 kW/s | |
Ethylene glycol concentration in coolant | 50% | |
Motor | Type | PMSM |
Ethylene glycol concentration in coolant | 50% Ethylene glycol | |
Rated power | 210 kW | |
Peak power | 405 kW | |
Battery pack | Type | Lithium iron phosphate battery |
Capacity | 210 Ah | |
Rated voltage | 550 V | |
Ethylene glycol concentration in coolant | 50% Ethylene glycol |
Number | Condition | Loaded Mass | Coasting Resistance | Waste Heat Recovery |
---|---|---|---|---|
Seq1 | 7 °C CHTT-TT | 49 t | Open | |
Seq2 | 7 °C CHTT-TT | 25 t | Open | |
Seq3 | °C CHTT-TT | 49 t | Open | |
Seq4 | °C CHTT-TT | 25 t | Open | |
Seq5 | °C CHTT-TT | 25 t | Off | |
Seq6 | °C CHTT-TT | 49 t | Open | |
Seq7 | °C CHTT-TT | 25 t | Open | |
Seq8 | °C CHTT-TT | 25 t | Off |
Seq | Stack (kWh) | Battery (kWh) | Net (kWh) | PTC (kWh) | Mileage (km) | Consumption per km (kWh/km) |
---|---|---|---|---|---|---|
1 | 50.46 | −1.86 | 48.6 | 0.44 | 20.53 | 2.36 |
2 | 42.84 | −12.6 | 30.24 | 0.26 | 20.57 | 1.47 |
3 | 52.52 | 0.45 | 52.97 | 0.59 | 20.50 | 2.58 |
4 | 47.15 | −14.04 | 33.11 | 0.44 | 20.56 | 1.61 |
5 | 50.49 | −15.53 | 34.96 | 3.48 | 20.26 | 1.73 |
6 | 55.26 | 1.64 | 56.9 | 1.36 | 20.59 | 2.76 |
7 | 48.46 | −12.14 | 36.32 | 1.3 | 20.74 | 1.75 |
8 | 26.56 | 8.69 | 35.25 | 4.86 | 17.48 | 2.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Zhu, Q.; Dong, D.; Zhao, Z.; Zhu, X.; Feng, K.; Dai, H.; Yuan, H. Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment. Energies 2025, 18, 2711. https://doi.org/10.3390/en18112711
Liu F, Zhu Q, Dong D, Zhao Z, Zhu X, Feng K, Dai H, Yuan H. Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment. Energies. 2025; 18(11):2711. https://doi.org/10.3390/en18112711
Chicago/Turabian StyleLiu, Fujian, Qiao Zhu, Dawei Dong, Zhichao Zhao, Xiuping Zhu, Kunyi Feng, Haifeng Dai, and Hao Yuan. 2025. "Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment" Energies 18, no. 11: 2711. https://doi.org/10.3390/en18112711
APA StyleLiu, F., Zhu, Q., Dong, D., Zhao, Z., Zhu, X., Feng, K., Dai, H., & Yuan, H. (2025). Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment. Energies, 18(11), 2711. https://doi.org/10.3390/en18112711