Post-Processing Thermal Activation of Thermoelectric Materials Based on Germanium
Abstract
1. Introduction
1.1. Thermoelectric Parameters
1.2. Thermoelectric Materials Based on Germanium
2. Materials and Methods
3. Results
3.1. The First Method of Post-Processing Activation
3.1.1. Structure S1
3.1.2. Structure S2
3.1.3. Structure S4
3.2. The Second Method of Post-Processing Activation
3.2.1. Structure S3
3.2.2. Structure S5
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- -
- SEM images showing the film surface;
- -
- EDS analysis results—surface mapping, showing the distribution of germanium and Au/V dopants in the sample;
- -
- EDS spectrogram, showing the chemical composition of the film.
References
- Samson, D.; Kluge, M.; Fuss, T.; Schmid, U.; Becker, T. Flight test results of a thermoelectric energy harvester for aircraft. J. Electron. Mater. 2012, 41, 1134–1137. [Google Scholar] [CrossRef]
- Vincent, J.; Lee, H. Power wearable medical device components via thermoelectric circuit integration. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Zhu, S.; Fan, Z.; Feng, B.; Shi, R.; Jiang, Z.; Peng, Y.; Gao, J.; Miao, L.; Koumoto, K. Review on wearable thermoelectric generators: From devices to applications. Energies 2022, 15, 3375. [Google Scholar] [CrossRef]
- Dziedzic, A.; Wójcik, S.; Gierczak, M.; Bernik, S.; Brguljan, N.; Reinhardt, K.; Körner, S. Planar thermoelectric microgenerators in application to power RFID tags. Sensors 2024, 24, 1646. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.M. CRC Handbook of Thermoelectrics, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar] [CrossRef]
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics: Basic Principles and New Materials Developments, 1st ed.; Springer: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, L.D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, J.; Zhang, J.; Li, M.; Kang, H.; Guo, E.; Chen, Z.; Chen, R.; Wang, J.; Wang, T. Enhancing the thermoelectric and mechanical properties of CuNiMn alloys by introducing Si impurity atoms and twins. ACS App. Electr. Mat. 2023, 5, 5668–5676. [Google Scholar] [CrossRef]
- Fu, L.W.; Cui, J.; Yu, Y.; Huang, Y.; Wang, Y.; Chen, Y.; He, J. Achieving a fine balance between the strong mechanical and high thermoelectric properties of n-type PbTe-3% Sb materials by alloying with PbS. J. Mater. Chem. A 2019, 7, 6304–6311. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Miura, A.; Miyazaki, K.; Horita, Z.; Iikubo, S. Improving thermoelectric properties of Bi2Te3 by straining under high pressure: Experiment and DFT calculation. Scr. Mater. 2024, 243, 115991. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A Comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould, R.W.; Cuff, D.C.; Tang, M.Y.; Dresselhaus, M.S.; et al. Enhanced Thermoelectric Figure-of-Merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 2008, 8, 4670–4674. [Google Scholar] [CrossRef] [PubMed]
- Issi, J.P. Thermoelectric properties of the Group V semimetals. In Thermoelectrics Handbook: Macro to Nano, 1st ed.; Rowe, D.M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; Volume 30. [Google Scholar]
- Adam, A.M.; El-Khouly, A.; Novitskii, A.; Ibrahim, E.; Kalugina, A.; Pankratova, D.; Taranova, A.; Sakr, A.; Trukhanov, A.; Salem, M.; et al. Enhanced thermoelectric figure of merit in Bi-containing Sb2Te3 bulk crystalline alloys. J. Phys. Chem. Solids 2020, 138, 109262. [Google Scholar] [CrossRef]
- Madavali, B.; Kim, H.-S.; Lee, C.-H.; Kim, D.-S.; Hong, S.-J. High Thermoelectric Figure of Merit in p-type (Bi2Te3)x − (Sb2Te3)1−x alloys made from element-mechanical alloying and spark plasma sintering. J. Electron. Mater. 2019, 48, 416–424. [Google Scholar] [CrossRef]
- Yang, S.H.; Zhu, T.J.; Sun, T.; He, J.; Zhang, S.N.; Zhao, X.B. Nanostructures in high-performance (GeTe)(x)(AgSbTe(2))(100-x) thermoelectric materials. Nanotechnology 2008, 19, 245707. [Google Scholar] [CrossRef]
- Schröder, T.; Rosenthal, T.; Giesbrecht, N.; Nentwig, M.; Maier, S.; Wang, H.; Snyder, G.J.; Oeckler, O. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering. Inorg. Chem. 2014, 53, 7722–7729. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Agne, M.T.; Michi, R.A.; Dunand, D.C.; Snyder, G.J. Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties. Acta Mater. 2018, 158, 239–246. [Google Scholar] [CrossRef]
- Ivanova, L.D.; Granatkina, Y.V.; Nikhezina, I.Y.; Malchev, A.G.; Krivoruchko, S.P.; Vekua, T.S.; Zaldastanishvili, M.I. Thermoelectric properties of fine-grained germanium telluride. Inorg. Mat. Appl. Res. 2021, 12, 347–353. [Google Scholar] [CrossRef]
- Yue, L.; Bai, P.; Zheng, S. Doping copper selenide for tuning the crystal structure and thermoelectric performance of germanium telluride-based materials. ACS Appl. Mat. Interf. 2023, 15, 8327–8335. [Google Scholar] [CrossRef]
- Suwardi, A.; Lim, S.H.; Zheng, Y.; Wang, X.; Chien, S.W.; Tan, X.Y.; Zhu, Q.; Wong, L.M.N.; Cao, J.; Wang, W.; et al. Effective enhancement of thermoelectric and mechanical properties of germanium telluride via rhenium-doping. J. Mater. Chem. C 2020, 8, 6940–16948. [Google Scholar] [CrossRef]
- Souchay, D.; Schwarzmüller, S.; Becker, H.; Kante, S.; Snyder, G.J.; Leineweber, A.; Oeckler, O. Cobalt germanide precipitates indirectly improve the properties of thermoelectric germanium antimony tellurides. J. Mater. Chem. C 2019, 7, 11419–11430. [Google Scholar] [CrossRef]
- Schwarzmüller, S.; Souchay, D.; Wagner, G.; Kemmesies, P.; Günther, D.; Bittner, M.; Zhang, G.; Ren, Z.; Feldhoff, A.; Snyder, G.J.; et al. Endotaxial intergrowth of copper telluride in gete-rich germanium antimony tellurides leads to high thermoelectric performance. Chem. Mater. 2022, 34, 10025–10039. [Google Scholar] [CrossRef]
- Morgan, K.A.; Zeimpekis, I.; Feng, Z.; Hewak, D. Enhancing thermoelectric properties of bismuth telluride and germanium telluride thin films for wearable energy harvesting. Thin Solid Film. 2022, 741, 139015. [Google Scholar] [CrossRef]
- Xu, Y.D.; Xu, G.Y.; Liu, Y.H.; Ge, C.C. Enhancement in thermoelectrical power factor of n-type Si80Ge20 alloys. Chin. Phys. Lett. 2008, 25, 2664–2666. [Google Scholar] [CrossRef]
- Miyata, A.; Sato, Y.; Okamoto, Y.; Kawahara, T.; Morimoto, J. The study for substrate temperature effects on thermoelectric properties of the amorphous Si-Ge-Au thin films. In Proceedings of the 21st International Conference on Thermoelectrics, Long Beach, CA, USA, 29 August 2002; pp. 442–445. [Google Scholar]
- Perez-Taborda, J.; Muñoz Rojo, M.; Maiz, J.; Neophytou, N.; Martin-Gonzalez, M. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 2016, 6, 32778. [Google Scholar] [CrossRef]
- Taniguchi, T.; Ishibe, T.; Hosoda, R.; Wagatsuma, Y.; Alam, M.; Sawano, K.; Uenuma, M.; Uraoka, Y.; Yamashita, Y.; Mori, N.; et al. Thermoelectric Si1−xGex and Ge epitaxial films on Si(001) with controlled composition and strain for group IV element-based thermoelectric generators. Appl. Phys. Lett. 2020, 117, 141602. [Google Scholar] [CrossRef]
- Miyata, A.; Abe, M.; Okamoto, Y.; Kawahara, T.; Morimoto, J.; Inoue, N. Thermoelectric properties of amorphous Ge/Au and Si/Au Thin Films. IEEJ Trans. Fundam. Mater. 2004, 124, 307–311. [Google Scholar] [CrossRef]
- Nowak, D.; Turkiewicz, M.; Solnica, N. Thermoelectric properties of thin films of germanium-gold alloy obtained by magnetron sputtering. Coatings 2019, 9, 120. [Google Scholar] [CrossRef]
- Kusano, K.; Tsuji, M.; Suemasu, T.; Toko, K. 80 °C synthesis of thermoelectric nanocrystalline Ge film on flexible plastic substrate by Zn-induced layer exchange. Appl. Phys. Express 2019, 12, 055501. [Google Scholar] [CrossRef]
- Portavoce, A.; Khelidj, H.; Oueldna, N.; Amhil, S.; Bertoglio, M.; Mangelinck, D.; Essaleh, L.; Hoummada, K. Thermoelectric power factor of Ge1−xSnx thin films. Materialia 2020, 14, 100873. [Google Scholar] [CrossRef]
- Ishiyama, T.; Ozawa, T.; Saitoh, N.; Yoshizawa, N.; Suemasu, T.; Toko, K. High thermoelectric performance in polycrystalline Yb3Ge5 thin films. APL Mater. 2024, 12, 021119. [Google Scholar] [CrossRef]
- Beensh-Marchwicka, G.; Prociów, E.; Mielcarek, W. Structure of Ge-based films exhibiting thermoelectric effect. Cryst. Res. Technol. 2001, 36, 1035–1043. [Google Scholar] [CrossRef]
- Berlicki, T.M.; Prociów, E.; Beensh-Marchwicka, G.; Osadnik, S. Electrical properties of Ge–Au films prepared by magnetron sputtering. Vacuum 2002, 65, 73–79. [Google Scholar] [CrossRef]
- Markowski, P.; Dziedzic, A.; Prociów, E. Thick/thin film thermocouples as power source for autonomous microsystems—Preliminary results. Microel. Int. 2005, 22, 3–7. [Google Scholar] [CrossRef]
- Markowski, P.; Dziedzic, A.; Prociów, E. Thermoelectric microgenerators made in mixed thick/thin film technology. Elektronika 2006, 12, 7–8. [Google Scholar]
- Markowski, P.; Prociów, E.; Dziedzic, A. Mixed thick/thin-film thermocouples for thermoelectric microgenerators and laser power sensor. Opt. Appl. 2009, 39, 681–690. [Google Scholar]
- Markowski, P.; Prociów, E.; Urbaniak, Ł. Thermoelectric properties of thin-film germanium-based layers. Microel. Int. 2015, 32, 115–121. [Google Scholar] [CrossRef]
- Tsao, C.-Y.; Wong, J.; Huang, J.; Camphell, P.; Song, D.; Green, M.A. Structural depedence of electrical properties of Ge films prepared by RF magnetron sputtering. Appl. Phys. A 2010, 102, 689–694. [Google Scholar] [CrossRef]
- Onuma, Y. Thermoelectric Properties of a Vacuum Depositet Germanium Thin Film. Electr. Eng. Jpn. 1969, 89, 72–77. [Google Scholar]
- Beensh-Marchwicka, G.; Osadnik, S.; Prociów, E. Thermoelectric properties of high temperature recrystallized Ge films. In Proceedings of the Metal/Nonmetal Microsystems: Physics, Technology, and Applications, Polanica Zdrój, Poland, 11–14 September 1995; pp. 226–229. [Google Scholar]
Symbol | S1 | S2 | S4 | S3 | S5 |
---|---|---|---|---|---|
Material | Ge:V (0.95 at.%) | Ge:V (1.47 at.%) | Ge:Au (3.13 at.%) | Ge:V (0.6 at.%) | Ge:Au (4.17 at.%) |
Activation method | 1 | 1 | 1 | 2 | 2 |
Max temp. of activation [K] | 723 | 823 | 823 | 823 | 823 |
Film thickness [μm] | 1.1 | 0.9 | 1.0 | 0.8 | 1.3 |
Related figure (characteristics) | Figure 2 | Figure 3 | Figure 4 | Figure 5 | Figure 6 |
ρ [µΩ·m] at 300 K, after activation | 64 | 32 | 375 | 140 | 85 |
ρ decrease at 300 K, after activation | 600× | 30× | 40× | 1000× | 2.5× |
α [μV/K] at 375 K/500 K | 197/212 | 180/190 | 118/144 | 199/210 | 132/147 |
α increase at 375 K, after activation | – | 200× | 20% | – | 38% |
PF = α2/ρ [mW·m−1·K−2] at 375 K/500 K | 0.75/1.24 | 0.14/0.20 | 0.04/0.07 | 0.34/0.53 | 0.21/0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowski, P.M.; Prociów, E. Post-Processing Thermal Activation of Thermoelectric Materials Based on Germanium. Energies 2025, 18, 65. https://doi.org/10.3390/en18010065
Markowski PM, Prociów E. Post-Processing Thermal Activation of Thermoelectric Materials Based on Germanium. Energies. 2025; 18(1):65. https://doi.org/10.3390/en18010065
Chicago/Turabian StyleMarkowski, Piotr Marek, and Eugeniusz Prociów. 2025. "Post-Processing Thermal Activation of Thermoelectric Materials Based on Germanium" Energies 18, no. 1: 65. https://doi.org/10.3390/en18010065
APA StyleMarkowski, P. M., & Prociów, E. (2025). Post-Processing Thermal Activation of Thermoelectric Materials Based on Germanium. Energies, 18(1), 65. https://doi.org/10.3390/en18010065