Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China
Abstract
:1. Introduction
2. Methods and Indicators
2.1. Extended STIRPAT Model
2.2. Ridge Regression
2.3. Urban Model Determination
2.4. Scenario Setting
2.5. Study Area
2.6. Data Sources
3. Analysis of Results
3.1. Analysis of Carbon Emissions
3.2. Analysis of Carbon Emissions Drivers
3.2.1. Urban Agglomeration Level
3.2.2. Urban Level
3.3. Analysis of Peak Carbon Scenario Modeling Projections
Simulation of Carbon Emissions Scenarios at the City Level
4. Discussion
4.1. Comparison with Previous Studies
4.2. Research Limitations
4.3. Countermeasures and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Lei, Y.; Zhang, W.; Fu, J. Resilient development of resource-based cities under the dual carbon goals. Geol. Bull. China 2024, 43, 1361–1372. [Google Scholar]
- Zheng, F.; Niu, Y. Environmental Decentralization, Resource Endowment and Urban Industrial Transformation and Upgrading: A Comparison of Resource-Based and Non-Resource-Based Cities in China. Sustainability 2023, 15, 475. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.Y.; Wu, B.; Li, L.L.; Zhang, Y.L. Spatial response relationship between mining and industrial activities and eco-environmental risks in mineral resource-based areas. Environ. Sci. Pollut. Res. 2023, 30, 84765–84777. [Google Scholar] [CrossRef]
- Zeng, S.; Su, B.; Zhang, M.L.; Gao, Y.; Liu, J.; Luo, S.; Tao, Q.M. Analysis and forecast of China’s energy consumption structure. Energy Policy 2021, 159, 112630. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef]
- Qiu, S.L.; Wang, Z.L.; Liu, S. The policy outcomes of low-carbon city construction on urban green development: Evidence from a quasi-natural experiment conducted in China. Sustain. Cities Soc. 2021, 66, 102699. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, H.; Wu, J.S. Spatiotemporal association of carbon dioxide emissions in China’s urban agglomerations. J. Environ. Manag. 2022, 323, 116109. [Google Scholar] [CrossRef]
- Ma, X.J.; Wang, C.X.; Dong, B.Y.; Gu, G.C.; Chen, R.M.; Li, Y.F.; Zou, H.F.; Zhang, W.F.; Li, Q.N. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef]
- Tian, S.; Xu, Y.; Wang, Q.S.; Zhang, Y.J.; Yuan, X.L.; Ma, Q.; Chen, L.P.; Ma, H.C.; Liu, J.X.; Liu, C.Q. Research on peak prediction of urban differentiated carbon emissions—A case study of Shandong Province, China. J. Clean. Prod. 2022, 374, 134050. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Wang, G.K.; Guo, X.J. Long-Term and Short-Term Effects of Carbon Emissions on Regional Healthy Development in Shanxi Province, China. Sustainability 2022, 14, 5173. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, C.B.; Gan, X.T.; Peng, C.H.; Deng, L. Can forest carbon sequestration offset industrial CO2 emissions? A case study of Hubei Province, China. J. Clean. Prod. 2023, 426, 139147. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.X.; Yang, R. Urbanization impact on carbon emissions in the Pearl River Delta region: Kuznets curve relationships. J. Clean. Prod. 2018, 180, 514–523. [Google Scholar] [CrossRef]
- Yang, L.; Xia, H.; Zhang, X.; Yuan, S. What matters for carbon emissions in regional sectors? A China study of extended STIRPAT model. J. Clean. Prod. 2018, 180, 595–602. [Google Scholar] [CrossRef]
- Zhao, L.T.; Zhao, T.; Yuan, R. Scenario simulations for the peak of provincial household CO2 emissions in China based on the STIRPAT model. Sci. Total Environ. 2022, 809, 151098. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Huang, W.J.; Chen, Z.F. The peak of CO2 emissions in China: A new approach using survival models. Energy Econ. 2019, 81, 1099–1108. [Google Scholar] [CrossRef]
- Edomah, N. Governing sustainable industrial energy use: Energy transitions in Nigeria’s manufacturing sector. J. Clean. Prod. 2019, 210, 620–629. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Luo, H.X. Research on carbon emission peak prediction and path of China’s public buildings: Scenario analysis based on LEAP model. Energy Build. 2023, 289, 113053. [Google Scholar] [CrossRef]
- Huo, T.F.; Xu, L.B.; Liu, B.S.; Cai, W.G.; Feng, W. China’s commercial building carbon emissions toward 2060: An integrated dynamic emission assessment model. Appl. Energy 2022, 325, 119828. [Google Scholar] [CrossRef]
- Liu, D.N.; Xiao, B.W. Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model. Ecol. Indic. 2018, 93, 647–657. [Google Scholar] [CrossRef]
- Yang, P.G.; Liang, X.; Drohan, P.J. Using Kaya and LMDI models to analyze carbon emissions from the energy consumption in China. Environ. Sci. Pollut. Res. 2020, 27, 26495–26501. [Google Scholar] [CrossRef]
- Sun, W.; Huang, C.C. Predictions of carbon emission intensity based on factor analysis and an improved extreme learning machine from the perspective of carbon emission efficiency. J. Clean. Prod. 2022, 338, 130414. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of Population Growth: Complacency concerning this component of man’s predicament is unjustified and counterproductive. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Du, L.L.; Li, X.Z.; Zhao, H.J.; Ma, W.C.; Jiang, P. System dynamic modeling of urban carbon emissions based on the regional National Economy and Social Development Plan: A case study of Shanghai city. J. Clean. Prod. 2018, 172, 1501–1513. [Google Scholar] [CrossRef]
- Chang, K.L.; Du, Z.F.; Chen, G.J.; Zhang, Y.X.; Sui, L.L. Panel estimation for the impact factors on carbon dioxide emissions: A new regional classification perspective in China. J. Clean. Prod. 2021, 279, 123637. [Google Scholar] [CrossRef]
- Xiao, B.W.; Niu, D.X.; Wu, H. Exploring the impact of determining factors behind CO2 emissions in China: A CGE appraisal. Sci. Total Environ. 2017, 581, 559–572. [Google Scholar] [CrossRef]
- Zhou, W.H.; Zeng, B.; Wang, J.Z.; Luo, X.S.; Liu, X.Z. Forecasting Chinese carbon emissions using a novel grey rolling prediction model. Chaos Solitons Fractals 2021, 147, 110968. [Google Scholar] [CrossRef]
- Shahbaz, M.; Chaudhary, A.R.; Ozturk, I. Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model. Energy 2017, 122, 83–93. [Google Scholar] [CrossRef]
- General Office of the State Council of the People’s Republic of China. Outline for Ecological Protection and Quality Development of the Yellow River Basin; General Office of the State Council of the People’s Republic of China: Beijing, China, 8 October 2021.
- Liu, Z.; Wang, F.; Tang, Z.Y.; Tang, J.T. Predictions and driving factors of production-based CO2 emissions in Beijing, China. Sustain. Cities Soc. 2020, 53, 101909. [Google Scholar] [CrossRef]
- Liu, X.; Meng, X.; Wang, X. Carbon Emissions Prediction of Jiangsu Province Based on Lasso-BP Neural Network Combined Model. IOP Conf. Ser. Earth Environ. Sci. 2021, 769, 022017. [Google Scholar] [CrossRef]
- Wu, C.B.; Huang, G.H.; Xin, B.G.; Chen, J.K. Scenario analysis of carbon emissions’ anti-driving effect on Qingdao’s energy structure adjustment with an optimization model, Part I: Carbon emissions peak value prediction. J. Clean. Prod. 2018, 172, 466–474. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Wang, P.; Wu, W.S.; Zhu, B.Z.; Wei, Y.M. Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy 2013, 106, 65–71. [Google Scholar] [CrossRef]
- Inner Mongolia Autonomous Region Development and Reform Commission. Indicator of Urbanization Rate of Resident Population in Inner Mongolia Autonomous Region Steadily Increasing in 2022; Inner Mongolia Autonomous Region Development and Reform Commission: Hohhot, China, 8 March 2023.
- National Development and Reform Commission of China. Circular of the National Development and Reform Commission of China on the Issuance of the Development Plan for the Hubao-Eyu City Cluster; National Development and Reform Commission of China: Beijing, China, 7 March 2018.
- The People’s Government of Baotou Municipality. Baotou City Air Pollution Prevention and Control Special Reward Management Measures (Trial); The People’s Government of Baotou Municipality: Baotou, China, 11 May 2015.
- Hohhot Party and Government Office. Hohhot Economic and Technological Development Zone Economic 11th Five-Year Plan; Hohhot Party and Government Office: Hohhot, China, 8 June 2006.
- Sun, D.Q.; Zhou, L.; Li, Y.; Liu, H.M.; Shen, X.Y.; Wang, Z.D.; Wang, X.X. New-type urbanization in China: Predicted trends and investment demand for 2015–2030. J. Geogr. Sci. 2017, 27, 943–966. [Google Scholar] [CrossRef]
- The People’s Goverment of Baotou Municipality. General Office of The People’s Goverment of Baotou Municipality on the Issuance of New Rare Earth Materials Production Enterprises to Support Policy Measures Notice; The People’s Government of Baotou Municipality: Baotou, China, 24 November 2014.
- Fang, C. China’s Urban Agglomeration and Metropolitan Area Construction Under the New Development Pattern. Econ. Geogr. 2021, 41, 1–7. [Google Scholar]
- Luo, P.; Cao, X.; Ji, Y. Urban Economic Linkage, Spatial Network and Regional Economic Gap: Based on Empirical Evidence Analysis of Five Provinces in Northwest China. Areal Res. Dev. 2021, 40, 43–49. [Google Scholar]
- The People’s Government of China. Outline of the 14th Five-Year Plan for National Economic and Social Development of the People’s Republic of China and the Vision 2035; The People’s Government of China: Beijing, China, 13 March 2021.
- Statistics Bureau of Inner Mongolia Autonomous Region. Hohhot City 2022 National Economic and Social Development Statistical Bulletin; Statistics Bureau of Inner Mongolia Autonomous Region: Hohhot, China, 27 March 2023.
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061. [Google Scholar] [CrossRef]
- The People’s Government of Ordos Municipality. Statistical Bulletin of National Economic and Social Development of Ordos City 2022; The People’s Government of Ordos Municipality: Ordos, China, 4 August 2023.
- Cobut, A.; Blanchet, P.; Beauregard, R. The environmental footprint of interior wood doors in non-residential buildings—Part 1: Life cycle assessment. J. Clean. Prod. 2015, 109, 232–246. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Saarivuori, E.; Wessman-Jääkeläinen, H.; Haque, N. Water footprinting and mining: Where are the limitations and opportunities? J. Clean. Prod. 2016, 135, 1098–1116. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, X.Q.; Chen, S.S. Global value chains and carbon emission reduction in developing countries: Does industrial upgrading matter? Environ. Impact Assess. Rev. 2022, 97, 106895. [Google Scholar] [CrossRef]
- Shen, L.Y.; Du, X.Y.; Cheng, G.Y.; Shi, F.C.; Wang, Y.X. Temporal-spatial evolution analysis on low carbon city performance in the context of China. Environ. Impact Assess. Rev. 2021, 90, 106626. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhang, J.; Li, J.P. Industrial structural transformation and carbon dioxide emissions in China. Energy Policy 2013, 57, 43–51. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Xu, Z.; Yue, X.; Yang, L.; Wang, R.; Chen, Y.; Ma, H. Carbon emission scenario simulation and policy regulation in resource-based provinces based on system dynamics modeling. J. Clean. Prod. 2024, 460, 142619. [Google Scholar] [CrossRef]
- Zheng, L.; Mueller, M.; Luo, C.B.; Yan, X.Y. Predicting whole-life carbon emissions for buildings using different machine learning algorithms: A case study on typical residential properties in Cornwall, UK. Appl. Energy 2024, 357, 122472. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, L.L.; She, X.H.; Li, C.; Cang, D.Q.; Liu, X.L.; Xuan, Y.M.; Ding, Y.L. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109539. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Ecology and the Environment Department of National Development and Reform Commission People’s Republic of China. Peak Carbon Implementation Program for Industry; Ecology and the Environment Department of National Development and Reform Commission People’s Republic of China: Beijing, China, 7 July 2022.
- Yu, J.S.; Song, Y.; Tang, D.Y.; Dai, J. A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring. J. Manuf. Syst. 2021, 58, 293–304. [Google Scholar] [CrossRef]
- Wu, J.; Ahmad, S.F.; Jaweria; Ali, Y.A.; Al-Razgan, M.; Awwad, E.M.; Ayassrah, A. Investigating the role of green behavior and perceived benefits in shaping green car buying behavior with environmental awareness as a moderator. Heliyon 2024, 10, e30098. [Google Scholar] [CrossRef]
- Gheibi, S.; Vilarrasa, V.; Holt, R.M. Numerical analysis of mixed-mode rupture propagation of faults in reservoir-caprock system in CO2 storage. Int. J. Greenh. Gas Control 2018, 71, 46–61. [Google Scholar] [CrossRef]
Categorization | Factor | Abbreviation | Unit of Measurement | Concrete Meaning |
---|---|---|---|---|
demographic | Total population | P | ten thousand persons | Resident population |
economics | Real GDP per capita | RG | constant 2000, CNY ten thousand | GDP to population ratio |
Total exports and imports | IE | constant 2000, CNY ten thousand | Total exports and imports | |
technical | Industrial energy consumption per GDP | LI | kilograms of standard coal per CNY ten thousand | Total industrial energy consumption and GDP ratio |
urbanization | Urbanization rate | UR | % | Ratio of urban population to resident population |
Number of employed | EP | person | Number of employed persons | |
Landscaping space | LC | hektare | Area of landscaped green space | |
industrial energy | Total industrial energy consumption | LE | tons of standard coal | Total industrial energy consumption |
Raw coal production | RY | tons | Output of major industrial products—raw coal production | |
Generation of electricity | GC | billion kilowatt hours | Output of major industrial products—electricity generation | |
industrial structure | Ratio of primary industry output value over total GDP | PG | % | Ratio of primary industry output value over total GDP |
Ratio of secondary industry output value over total GDP | SG | % | Ratio of secondary industry output value overe total GDP | |
Ratio of tertiary industry output value over total GDP | RG | % | Ratio of tertiary industry output value over total GDP | |
Ratio of industry sector output value over total GDP | GI | % | Ratio of industry sector output value over total GDP | |
implicit variable | Carbon emissions | CC | million tons | Total carbon emissions |
Factor | Hohhot | Baotou | Ordos |
---|---|---|---|
lnP | - | 1.86 | 1.195 |
lnRG | 0.132 | 0.173 | 0.132 |
lnPG | - | - | −0.173 |
lnSG | - | - | - |
lnTG | - | - | - |
lnGI | −1.461 | −0.459 | 1.772 |
lnLE | - | 0.217 | 0.098 |
lnLI | −0.176 | - | 0.305 |
lnIE | 0.25 | - | - |
lnEP | - | - | 0.851 |
lnUR | 0.334 | 1.27 | 0.392 |
lnLC | - | - | 0.106 |
lnRY | 0.088 | - | 0.087 |
lnGC | 0.14 | 0.096 | 0.121 |
_cons | −3.96 | −16.117 | −13.892 |
Year | Proportional Error% | ||
---|---|---|---|
Hohhot | Baotou | Ordos | |
2000 | 11.25% | −5.02% | 3.15% |
2001 | −18.68% | −0.20% | 1.44% |
2002 | −14.11% | 2.63% | 1.24% |
2003 | −7.69% | 1.47% | 1.92% |
2004 | 3.59% | 2.67% | −4.06% |
2005 | −1.96% | −3.31% | −5.54% |
2006 | 3.12% | −2.65% | −6.68% |
2007 | −6.18% | −0.43% | −3.17% |
2008 | 2.76% | −0.29% | −6.00% |
2009 | 7.07% | −1.95% | −0.19% |
2010 | 0.81% | −2.37% | 5.86% |
2011 | 4.29% | −1.10% | 0.10% |
2012 | 3.21% | 3.67% | 1.64% |
2013 | 7.07% | 0.77% | −1.29% |
2014 | 4.96% | 0.76% | −1.29% |
2015 | 3.29% | 3.31% | 1.83% |
2016 | 3.54% | −0.02% | 0.95% |
2017 | −0.59% | −1.42% | 0.85% |
2018 | −5.05% | 0.23% | 0.74% |
2019 | −5.44% | −1.94% | 2.84% |
2020 | −4.73% | 0.03% | 2.63% |
2021 | −2.70% | 1.51% | −1.49% |
2022 | −5.19% | 1.38% | −0.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Xia, B.; Li, Y.; Qi, X.; Zhang, J. Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China. Energies 2024, 17, 5521. https://doi.org/10.3390/en17225521
Yang W, Xia B, Li Y, Qi X, Zhang J. Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China. Energies. 2024; 17(22):5521. https://doi.org/10.3390/en17225521
Chicago/Turabian StyleYang, Wen, Bing Xia, Yu Li, Xiaoming Qi, and Jing Zhang. 2024. "Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China" Energies 17, no. 22: 5521. https://doi.org/10.3390/en17225521
APA StyleYang, W., Xia, B., Li, Y., Qi, X., & Zhang, J. (2024). Prediction and Scenario Simulation of Carbon Emissions Peak of Resource-Based Urban Agglomeration with Industrial Clusters—Case of Hubaoe Urban Agglomeration Inner Mongolia Autonomous Region, China. Energies, 17(22), 5521. https://doi.org/10.3390/en17225521