Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Results
3.1.1. SEM-EDS Analysis
3.1.2. XRD Analysis
3.1.3. XRF Analysis
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IRENA and IEA-PVPS. End-of-Life Management: Solar Photovoltaic Panels. 2016. Available online: https://www.irena.org/publications/2016/Jun/End-of-life-management-Solar-Photovoltaic-Panels (accessed on 4 June 2024).
- Mirletz, H.; Hieslmair, H.; Ovaitt, S.; Curtis, T.L.; Barnes, T.M. Unfounded concerns about photovoltaic module toxicity and waste are slowing decarbonization. Nat. Phys. 2023, 19, 1376–1378. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Yuan, X.; Liu, C.; Shen, C.Y.; Dai, G.C. Separation of backsheets from waste photovoltaic (PV) modules by ultrasonic irradiation. IOP Conf. Ser. Earth Environ. Sci. 2019, 242, 032046. [Google Scholar] [CrossRef]
- Solid Waste Management. World Bank, 2022. Available online: https://go.nature.com/3PuZ9pL (accessed on 10 June 2024).
- Brown, M.A. Solid Waste from the Operation and Decommissioning of Power Plants. ORNL, 2017. Available online: https://go.nature.com/3LdqlYG (accessed on 3 June 2024).
- Agrawala, S. Global Plastics Outlook: Policy Scenarios to 2060—Policy Highlights. OECD, 2022. Available online: https://go.nature.com/48v2ayZ (accessed on 5 June 2024).
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. Global e-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential. UNU/UNITAR, ITU, ISWA. 2020. Available online: https://go.nature.com/3RAfnAP (accessed on 3 June 2024).
- Dal Mas, F.; Zeng, X.; Huang, Q.; Li, J. Quantifying material flow of oily sludge in China and its implications. J. Environ. Manag. 2021, 287, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Hieslmair, H. Contextualizing PV waste to 2050 and the role of module reliability and degradation. In PV Reliability Workshop; NREL: Golden, CO, USA, 2023. [Google Scholar]
- Heath, G.A.; Silverman, T.J.; Kempe, M.; Deceglie, M.; Ravikumar, D.; Remo, T.; Cui, H.; Sinha, P.; Libby, C.; Shaw, S.; et al. Research and development priorities for silicon photovoltaic module recycling to support a circular economy. Nat. Energy 2020, 5, 502–510. [Google Scholar] [CrossRef]
- Rodríguez, K.T.; Vázquez, A.I.S.; Valdés, J.J.R.; Rodríguez, J.I.; Figueroa, M.G.P.; Porcar, S.; Méndez, A.Á. Photovoltaic glass waste recycling in the development of glass substrates for photovoltaic applications. Materials 2023, 16, 2848. [Google Scholar] [CrossRef]
- Peplow, M. Solar panels face recycling challenge. ACS Cent. Sci. 2022, 8, 299–302. [Google Scholar] [CrossRef]
- Sim, Y.; Tay, Y.B.; Pham, H.K.; Mathews, N. A facile crush-and-sieve treatment for recycling end-of-life photovoltaics. Waste Manag. 2023, 156, 97–106. [Google Scholar] [CrossRef]
- Li, M.; Widijatmoko, S.D.; Wang, Z.; Hall, P. A methodology to liberate critical metals in waste solar panel. Appl. Energy 2023, 337, 120900. [Google Scholar] [CrossRef]
- Bogust, P.; Smith, Y.R. Physical separation and beneficiation of end-of-life photovoltaic panel materials: Utilizing temperature swings and particle shape. JOM 2020, 72, 2615–2623. [Google Scholar] [CrossRef]
- Tokoro, C.; Nishi, M.; Tsunazawa, Y. Selective grinding of glass to remove resin for silicon-based photovoltaic panel recycling. Adv. Powder Technol. 2021, 32, 841–849. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Altimari, P.; Padoan, F.C.; Atia, T.A.; Beolchini, F.; Toro, L. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels: Environmental and economic assessment. J. Environ. Manag. 2019, 248, 109313. [Google Scholar] [CrossRef] [PubMed]
- Wahman, M.; Surowiak, A. Recycling of discarded photovoltaic modules using mechanical and thermal methods. Inz. Miner. 2022, 1, 107–116. [Google Scholar]
- Wahman, M.; Surowiak, A.; Berent, K.; Szymczak, P. Eco-efficient removal of polymer back sheet fraction and material separation from solar cell waste. Sol. Energy 2023, 264, 112085. [Google Scholar] [CrossRef]
- Wahman, M.; Surowiak, A.; Ebin, B.; Berent, K. PV back sheet recovery from c-Si modules using hot knife technique. Sol. Energy Mater. Sol. Cells 2024, 276, 113067. [Google Scholar] [CrossRef]
- Belançon, M.P.; Sandrini, M.; Tonholi, F.; Herculano, L.S.; Dias, G.S. Towards long term sustainability of c-si solar panels: The environmental benefits of glass sheet recovery. Renew. Energy Focus 2022, 42, 206–210. [Google Scholar] [CrossRef]
- Doni, A.; Dughiero, F. Electrothermal heating process applied to c-Si PV recycling. In Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 757–762. [Google Scholar]
- Min, R.; Deng, W.; Wang, Z.; Qi, T.; Zhang, Z.; Xiao, W.; Wang, D. Effective decapsulation method for photovoltaic modules: Limonene-induced eva controlled swelling under sonication and debonding mechanism analysis. J. Clean. Prod. 2024, 450, 141917. [Google Scholar] [CrossRef]
- Vaněk, J.; Jandova, K.; Vanýsek, P.; Maule, P. Chemical delamination applicable to a low-energy recycling process of photovoltaic modules. Processes 2023, 11, 3078. [Google Scholar] [CrossRef]
- Kamano, K.; Jaroenkhasemmeesuk, C.; Chaisartra, C.; Thoopkaew, T.; Tippayawong, N. Glass separation process for recycling of solar photovoltaic panels by microwave heating. AIP Conf. Proc. 2022, 2681, 020002. [Google Scholar]
- Królikowski, M.; Fotek, M.; Żach, P.; Michałowski, M. Development of a recycling process and characterization of eva, pvdf, and pet polymers from end-of-life pv modules. Materials 2024, 17, 821. [Google Scholar] [CrossRef]
- Danz, P.; Aryan, V.; Möhle, E.; Nowara, N. Experimental Study on Fluorine Release from Photovoltaic Backsheet Materials Containing PVF and PVDF during Pyrolysis and Incineration in a Technical Lab-Scale Reactor at Various Temperatures. Toxics 2019, 7, 47. [Google Scholar] [CrossRef]
- Tammaro, T.; Rimauro, J.; Fiandra, V.; Salluzzo, A. Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes. Renew. Energy 2015, 81, 103–112. [Google Scholar] [CrossRef]
- Sander, K. Study on the Development of a Take Back and Recovery System for Photovoltaic Products; Institut für Ökologie und Politik: Hamburg, Germany, 2007. [Google Scholar]
- Powalla, M.; Paetel, S.; Ahlswede, E.; Wuerz, R.; Wessendorf, C.D.; Friedlmeier, T.M. Thin-Film Solar Cells Exceeding 22% Solar Cell Efficiency: An Overview on CdTe-, Cu(In,Ga)Se2-, and Perovskite-Based Materials. Appl. Phys. Rev. 2018, 5, 041602. [Google Scholar] [CrossRef]
- DIN EN 572-1:2016-06; Glass in Building—Basic Soda-Lime Silicate Glass Products—Part 1: Definitions and General Physical and Mechanical Properties. German Version EN 572-1:2012+A1:2016; Beuth Verlag GmbH: Berlin, Germany, 2016.
- Blieske, U.; Stollwerck, G. Glass and other encapsulation materials. Semicond. Semimet. 2013, 89, 199–258. [Google Scholar]
- Riyatun; Bintari, P.L.; Purwanto, H.; Marzuki, A. Characterization of soda-lime glass with aluminium doping as a planar wave guide using electric-field-assisted solid-state ion exchange method. J. Phys. Conf. Ser. 2019, 1153, 012084. [Google Scholar] [CrossRef]
- Galvão, Á.C.P.; Farias, A.C.M.; Mendes, J.U.L. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation. Cerâmica 2015, 61, 367–373. [Google Scholar] [CrossRef]
- Chakraborty, R.; Dey, A.; Mukhopadhyay, A.K. Loading rate effect on nanohardness of soda-lime-silica glass. Metall. Mater. Trans. A 2010, 41, 1301–1312. [Google Scholar] [CrossRef]
- Schmitz, A.; Kamiński, J.; Scalet, B.M.; Soria, A. Energy consumption and CO2 emissions of the European glass industry. Energy Policy 2011, 39, 142. [Google Scholar] [CrossRef]
- Rio, D.D.F.D.; Sovacool, B.K.; Foley, A.; Griffiths, S.; Bazilian, M.; Kim, J.; Rooney, D. Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options. Renew. Sustain. Energy Rev. 2022, 155, 111885. [Google Scholar]
Compound | Recovered Glass (%) | Standard Soda-Lime Glass (%) [32,33,34] |
---|---|---|
Na2O | 20.795 | 10–16 |
MgO | 4.436 | 0–6 |
Al2O3 | 1.426 | 0–3 |
SiO2 | 66.355 | 69–74 |
CaO | 6.721 | 5–14 |
Others | 1.113 | 0–5 |
Compound | Thermal–Mechanical Delamination (%) | Crushing and Sieving (%) | Ratio |
---|---|---|---|
Si | 83.00 | 41.67 | 1.99 |
Ca | 0.02 | 4.24 | 0.005 |
Na | - | 2.32 | - |
Al | 2.00 | 1.56 | - |
Ti | - | 0.81 | - |
Mg | 0.01 | 0.49 | 0.02 |
Fe | 0.21 | 0.26 | - |
Ag | 0.61 | 0.22 | 2.77 |
Other | 0.18 | 0.50 | 0.36 |
Unidentified elements (UE) | 13.97 | 47.93 | 0.29 |
Sum | 100 | 100 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surowiak, A.; Wahman, M. Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels. Energies 2024, 17, 4444. https://doi.org/10.3390/en17174444
Surowiak A, Wahman M. Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels. Energies. 2024; 17(17):4444. https://doi.org/10.3390/en17174444
Chicago/Turabian StyleSurowiak, Agnieszka, and Mustapha Wahman. 2024. "Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels" Energies 17, no. 17: 4444. https://doi.org/10.3390/en17174444
APA StyleSurowiak, A., & Wahman, M. (2024). Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels. Energies, 17(17), 4444. https://doi.org/10.3390/en17174444