Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Framework
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moser, C.; Leipold, S. Toward “hardened” accountability? Analyzing the European Union’s hybrid transnational governance in timber and biofuel supply chains. Regul. Gov. 2021, 15, 115–132. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council on the Promotion of the Use of Energy from Renewable Resources. 2018. Available online: https://www.europeansources.info/record/directive-eu-2018-2001-on-the-promotion-of-the-use-ofenergy-from-renewable-sources/ (accessed on 20 March 2024).
- Richter, D.D.; Jenkins, D.H.; Karakash, J.T.; Knight, J.; McCreery, L.R.; Nemestothy, K.P. Resource policy. Wood energy in America. Science 2009, 323, 1432–1433. [Google Scholar] [CrossRef] [PubMed]
- Chudy, R.; Szulecki, K.; Siry, J.; Grala, R. Biomasa drzewna jako surowiec dla energetyki. Academia 2021, 65, 62–65. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Bailis, R.; Drigo, R.; Ghilardi, A.; Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Chang. 2015, 5, 266–272. [Google Scholar] [CrossRef]
- Ahmad, R.; Zhou, Y.; Hua, L.; Zhao, N.; Abbas, A.; Sultan, M.; Raman, P.; Dong, R. Study on biomass-based gasifier cookstovefor domestic application. Fresenius Environ. Bull. 2021, 30, 4365–4374. [Google Scholar]
- Ahmad, R.; Ilyas, H.N.; Li, B.; Sultan, M. Current challenges and future prospect of biomass cooking and heating stoves in Asian Countries. Front. Energy Res. 2022, 10, 880064. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies 2022, 15, 2264. [Google Scholar] [CrossRef]
- Durocher, C.; Thiffault, E.; Achim, A.; Auty, D.; Barrette, J. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass Bioenergy 2019, 120, 376–386. [Google Scholar] [CrossRef]
- Smeets, E.M.W.; Faaij, A.P.C. Bioenergy potentials from forestry in 2050. Clim. Chang. 2007, 81, 353–390. [Google Scholar] [CrossRef]
- Karjalainen, T.; Asikainen, A.; Ilavsky, J.; Zamboni, R.; Hotari, K.-E.; Röser, D. Estimation of Energy Wood Potential in Europe; Working papers of the Finnish Forest Research Institute; Finnish Forest Research Institute: Helsinki, Finland, 2004; Available online: https://jukuri.luke.fi/handle/10024/535922 (accessed on 20 March 2024).
- Panoutsou, C.; Eleftheriadis, J.; Nikolaou, A. Biomass supply in EU27 from 2010 to 2030. Energy Policy 2009, 37, 5675–5686. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Felby, C. Biomass for energy in the European Union—A review of bioenery resource assessment. Biotechnol. Biofuels 2012, 5, 25. [Google Scholar] [CrossRef] [PubMed]
- Camia, A.; Giuntoli, J.; Jonsson, R.; Robert, N.; Cazzaniga, N.E.; Jasinevičius, G.; Grassi, G.; Barredo, J.I.; Mubareka, S. The Use of Woody Biomass for Energy Production in the EU; JRC science for policy report JRC122719; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Lundmark, R.; Athanassiadis, D.; Wetterlund, E. Supply assessment of forest biomass—A bottom-up approach for Sweden. Biomass Bioenergy 2015, 75, 213–226. [Google Scholar] [CrossRef]
- Kumar, A.; Adamopoulos, S.; Jones, D.; Amiandamhen, S.O. Forest Biomass Availability and Utilization Potential in Sweden: A Review. Waste Biomass Valor. 2021, 12, 65–80. [Google Scholar] [CrossRef]
- Ralf-Uwe, S.; Tran Thuc, H.; Karsten, G.; Suili, X.; Wolfgang, W. Residential Heating Using Woody Biomass in Germany—Supply, Demand, and Spatial Implications. Land 2022, 11, 1937. [Google Scholar] [CrossRef]
- Šafařík, D.; Hlaváčková, P.; Michal, J. Potential of Forest Biomass Resources for Renewable Energy Production in the Czech Republic. Energies 2022, 15, 47. [Google Scholar] [CrossRef]
- Różański, H.; Jabłoński, K. Możliwości pozyskania biomasy leśnej na cele energetyczne w Polsce. J. Civ. Eng. Environ. Archit. 2015, 62, 351–358. [Google Scholar]
- Majchrzak, M.; Szczypa, P.; Adamowicz, K. Supply of Wood Biomass in Poland in Terms of Extraordinary Threat and Energy Transition. Energies 2022, 15, 5381. [Google Scholar] [CrossRef]
- Routa, J.; Kellomäki, S.; Kilpeläinen, A.; Peltola, H.; Strandman, H. Effects of forest management on the carbon dioxide emissions of wood energy in integrated production of timber and energy biomass. GCB Bioenergy 2011, 3, 483–497. [Google Scholar] [CrossRef]
- Winder, G.M.; Bobar, A. Responses to stimulate substitution and cascade use of wood within a wood use system: Experience from Bavaria, Germany. Appl. Geogr. 2018, 90, 350–359. [Google Scholar] [CrossRef]
- Favero, A.; Daigneault, A.; Sohngen, B. Forests: Carbon sequestration, biomass energy, or both? Sci. Adv. 2020, 6, eaay6792. [Google Scholar] [CrossRef] [PubMed]
- Favero, A.; Mendelsohn, R.; Sohngen, B. Using forests for climate mitigation: Sequester carbon or produce woody biomass? Clim. Chang. 2017, 144, 195–206. [Google Scholar] [CrossRef]
- Ameray, A.; Bergeron, Y.; Valeria, O.; Montoro Girona, M.; Cavard, X. Forest Carbon Management: A Review of Silvicultural Practices and Management Strategies Across Boreal, Temperate and Tropical Forests. Curr. For. Rep. 2021, 7, 245–266. [Google Scholar] [CrossRef]
- Baral, A.; Malins, C. Assessing the Climate Mitigation Potential of Biofuels Derived from Residues and Wastes in the European Context; International Council on Clean Transportation: Washington, DC, USA, 2014; Available online: https://theicct.org/wp-content/uploads/2021/06/ICCT_biofuels_wastes-residues_20140130.pdf (accessed on 20 March 2024).
- Giuliana, Z.; Naomi, P.; Bird, N. Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Bioenergy 2012, 4, 761–772. [Google Scholar] [CrossRef]
- Batista, R.M.; Converti, A.; Pappalardo, J.; Benachour, M.; Sarubbo, L.A. Tools for Optimization of Biomass-to-Energy Conversion Processes. Processes 2023, 11, 854. [Google Scholar] [CrossRef]
- Keith, K.; Castillo-Villar, K.K. Stochastic Programming Model Integrating Pyrolysis Byproducts in the Design of Bioenergy Supply Chains. Energies 2023, 16, 4070. [Google Scholar] [CrossRef]
- Abusaq, Z.; Habib, M.S.; Shehzad, A.; Kanan, M.; Assaf, R. A Flexible Robust Possibilistic Programming Approach toward Wood Pellets Supply Chain Network Design. Mathematics 2022, 10, 3657. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew. Sustain. Energy Rev. 2020, 120, 109610. [Google Scholar] [CrossRef]
- Sahoo, K.; Hawkins, G.L.; Yao, X.A.; Samples, K.; Mani, S. GIS-based biomass assessment and supply logistics system for a sustainable biorefinery: A case study with cotton stalks in the Southeastern US. Appl. Energy 2016, 182, 260–273. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Schuler, J.; Hartley, D.; Volk, T.; Eisenbies, M. Optimization of harvest and logistics for multiple lignocellulosic biomass feedstocks in the northeastern United States. Energy 2020, 197, 117260. [Google Scholar] [CrossRef]
- Zyadin, A.; Natarajan, K.; Latva-Käyrä, P.; Igliński, B.; Iglińska, A.; Trishkin, M.; Pelkonen, P.; Pappinen, A. Estimation of surplus biomass potential in southern and central Poland using GIS applications. Renew. Sustain. Energy Rev. 2018, 89, 204–215. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Yi, W.; Cai, H.; Li, Y.; Su, Z. Agri-biomass supply chain optimization in north China: Model development and application. Energy 2022, 239, 122374. [Google Scholar] [CrossRef]
- Nienow, S.; McNamara, K.T.; Gillespie, A.R. Assessing plantation biomass for co-firing with coal in northern Indiana: A linear programming approach. Biomass Bioenergy 2000, 18, 125–135. [Google Scholar] [CrossRef]
- Abdelhady, S.; Shalaby, M.A.; Shaban, A. Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt. Energies 2021, 14, 3063. [Google Scholar] [CrossRef]
- Ferretti, I. Optimization of the Use of Biomass Residues in the Poplar Plywood Sector. Procedia Comput. Sci. 2021, 180, 714–723. [Google Scholar] [CrossRef]
- Reis, S.A.d.; Leal, J.E.; Thomé, A.M.T. A Two-Stage Stochastic Linear Programming Model for Tactical Planning in the Soybean Supply Chain. Logistics 2023, 7, 49. [Google Scholar] [CrossRef]
- Kwiatkowski, A. Forum Biomasy. Available online: https://powermeetings.eu/konferencja/forum-biomasy/wp-content/uploads/sites/19/2018/05/04-ENEA-Adam-Kwiatkowski-Forum-Biomasy-powermeetings.eu-Mielec-2018.pdf (accessed on 19 February 2024).
- Forest Data Bank. Available online: www.bdl.lasy.gov.pl/portal/en (accessed on 20 January 2024).
- State Forests. Information on Sales of Selected Groups of Wood in Forest Districts State Forests. Available online: https://drewno.zilp.lasy.gov.pl/drewno/ (accessed on 15 February 2024).
- Gradziuk, P.; Gradziuk, B.; Trocewicz, A.; Jendrzejewski, B. Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models. Energies 2020, 13, 5054. [Google Scholar] [CrossRef]
- Agroprofil Agricultural Portal. Available online: https://agroprofil.pl/wiadomosci (accessed on 20 March 2024).
- Petersson, H.; Holm, S.; Ståhl, G.; Alger, D.; Fridman, J.; Lehtonen, A.; Lundström, A.; Mäkipää, R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass—A comparative study. For. Ecol. Manag. 2012, 270, 78–84. [Google Scholar] [CrossRef]
- Lehtonen, A.; Mäkipää, R.; Heikkinen, J.; Sievänen, R.; Liski, J. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. For. Ecol. Manag. 2004, 188, 211–224. [Google Scholar] [CrossRef]
- Krejza, J.; Světlík, J.; Bednář, P. Allometric relationship and biomass expansion factors (BEFs) for above- and below-ground biomass prediction and stem volume estimation for ash (Fraxinus excelsior L.) and oak (Quercus robur L.). Trees 2017, 31, 1303–1316. [Google Scholar] [CrossRef]
- The Engineering ToolBox. Wood Species-Densities. Available online: https://www.engineeringtoolbox.com/wood-density-d_40.html (accessed on 10 March 2024).
- Bettinger, P.; Boston, K.; Siry, J.P.; Grebner Donald, L. Forest Management and Planning: Linear Programming; Elsevier: San Diego, CA, USA, 2009. [Google Scholar]
- Gurobi Optimizer; Gurobi Optimization, LLC: Beaverton, OR, USA, 2023. Available online: https://www.gurobi.com/solutions/gurobi-optimizer/ (accessed on 20 March 2024).
- QGIS Geographic Information System. QGIS Association. QGIS.org. 2024. Available online: https://www.qgis.org/id/site/ (accessed on 20 March 2024).
- Frombo, F.; Minciardi, R.; Robba, M.; Rosso, F.; Sacile, R. Planning woody biomass logistics for energy production: A strategic decision model. Biomass Bioenergy 2009, 33, 372–383. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Suardi, A.; Alfano, V.; Bergonzoli, S.; Palmieri, N.; Pari, L. A GIS Approach to Locate a Small Size Biomass Plant Powered by Olive Pruning and to Estimate Supply Chain Costs. Energies 2020, 13, 3385. [Google Scholar] [CrossRef]
- Perpiñá, C.; Alfonso, D.; Pérez-Navarro, A.; Peñalvo, E.; Vargas, C.; Cárdenas, R. Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renew. Energy 2009, 34, 555–565. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Wang, K.; Long, Y.; Zhang, D.; Xiao, Z. A Spatially Explicit Optimization Model for Agricultural Straw-Based Power Plant Site Selection: A Case Study in Hubei Province, China. Sustainability 2017, 9, 832. [Google Scholar] [CrossRef]
- Nordin, I.; Elofsson, K.; Jansson, T. Optimal localisation of agricultural biofuel-Swedish case. Eur. Rev. Agric. Econ. 2021, 49, 910–941. [Google Scholar] [CrossRef]
- Ahmadi, L.; Kannangara, M.; Bensebaa, F. Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective. Sustain. Energy Technol. Assess. 2020, 37, 100627. [Google Scholar] [CrossRef]
- Furubayashi, T.; Nakata, T. Analysis of woody biomass utilization for heat, electricity, and CHP in a regional city of Japan. J. Clean. Prod. 2021, 290, 125665. [Google Scholar] [CrossRef]
- Berndes, G.; Hoogwijk, M.; van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 2003, 25, 1–28. [Google Scholar] [CrossRef]
- Lauri, P.; Havlík, P.; Kindermann, G.; Forsell, N.; Böttcher, H.; Obersteiner, M. Woody biomass energy potential in 2050. Energy Policy 2014, 66, 19–31. [Google Scholar] [CrossRef]
- Vera, I.; Hoefnagels, R.; van der Kooij, A.; Moretti, C.; Junginger, M. A carbon footprint assessment of multi-output biorefineries with international biomass supply: A case study for the Netherlands. Biofuels Bioprod. Bioref. 2020, 14, 198–224. [Google Scholar] [CrossRef]
- Bentsen, N.S.; Jack, M.W.; Felby, C.; Thorsen, B.J. Allocation of biomass resources for minimising energy system greenhouse gas emissions. Energy 2014, 69, 506–515. [Google Scholar] [CrossRef]
ID | Spatial Unit | Distance (a) (km) | Arable Area (ha 103) | Forested Area (ha 103) | Natura 2000 (b) (ha 103) | Social Forests (c) (ha 103) |
---|---|---|---|---|---|---|
1 | Mielec | 16 | 14.39 | 11.51 | 8.52 | 8.92 |
2 | Staszow | 18 | 66.17 | 27.79 | 3.24 | 9.95 |
3 | Tuszyma | 24 | 21.40 | 16.05 | 4.81 | 10.65 |
4 | N Deba | 30 | 39.01 | 27.31 | 22.45 | 15.76 |
5 | Chmielnik | 33 | 78.49 | 20.93 | 2.07 | 4.65 |
6 | Dabrawa T | 39 | 73.39 | 23.48 | 0.71 | 12.01 |
7 | Łagow | 41 | 33.7 | 19.38 | 5.72 | 11.33 |
8 | Kolbuszowa | 42 | 16.75 | 12.98 | 4.80 | 8.61 |
9 | Debica | 48 | 30.10 | 18.81 | 1.37 | 8.35 |
10 | Glogow | 53 | 22.23 | 18.53 | 6.73 | 12.56 |
11 | Daleszyce | 54 | 16.64 | 14.97 | 3.99 | 9.92 |
12 | Ostrowiec | 55 | 72.52 | 29.01 | 3.43 | 13.33 |
13 | Pinczow | 57 | 78.18 | 13.03 | 5.93 | 6.98 |
14 | Rozwadow | 57 | 30.58 | 22.02 | 5.69 | 11.81 |
15 | Rudnik | 62 | 19.56 | 20.54 | 5.02 | 7.03 |
16 | Gromnik | 65 | 1.98 | 22.77 | 0.69 | 7.92 |
17 | Goscieradow | 66 | 39.78 | 23.21 | 8.77 | 8.91 |
18 | Strzyżów | 67 | 40.31 | 29.56 | 0.82 | 12.35 |
19 | Starachowice | 69 | 2.24 | 14.31 | 1.61 | 14.18 |
20 | Suchedniow | 73 | 3.75 | 19.90 | 12.00 | 18.02 |
21 | Leżajsk | 77 | 35.45 | 25.7 | 2.37 | 15.82 |
22 | Jedrzejow | 78 | 70.17 | 23.39 | 4.12 | 7.54 |
23 | Zagnansk | 78 | 2.66 | 11.18 | 5.11 | 9.41 |
24 | Janow L | 80 | 56.67 | 44.39 | 31.14 | 20.92 |
25 | Kołaczyce | 81 | 30.33 | 22.24 | 6.90 | 9.68 |
26 | Brzesko | 82 | 26.75 | 19.62 | 0.06 | 5.55 |
27 | Kielce | 82 | 32.86 | 23.00 | 5.91 | 13.03 |
28 | Marcule | 82 | 40.38 | 16.82 | 0.28 | 2.94 |
29 | Krasnik | 85 | 87.35 | 30.57 | 2.80 | 2.94 |
30 | Skarżysko | 86 | 25.35 | 20.28 | 3.50 | 15.47 |
31 | Zwolen | 86 | 69.00 | 31.74 | 4.08 | 4.12 |
32 | Niepolomice | 88 | 15.01 | 10.70 | 10.5 | 10.17 |
33 | Biłgoraj | 92 | 42.48 | 40.35 | 8.07 | 8.04 |
34 | Gorlice | 92 | 1.03 | 20.64 | 14.01 | 15.79 |
35 | Miechow | 92 | 103.4 | 13.79 | 0.18 | 6.67 |
36 | Stąporkow | 94 | 2.77 | 17.20 | 2.10 | 8.56 |
37 | Kańczuga | 96 | 42.83 | 18.2 | 5.46 | 10.24 |
38 | Dukla | 99 | 18.57 | 19.81 | 16.84 | 14.53 |
39 | Brzozów | 100 | 21.82 | 24.73 | 6.83 | 15.51 |
40 | Sieniawa | 100 | 17.99 | 17.54 | 6.97 | 9.93 |
Total | - | 1444.04 | 857.98 | 245.60 | 420.14 |
Biomass Source | Potential Availability | Price |
---|---|---|
Forest biomass | Forest Data Bank [43] | State Forests [44] |
Straw from agriculture | Gradziuk et al. [45] | AgroProfil Agricultural Portal [46] |
ID | Low-Quality Wood | Firewood | Forest Residues | Agriculture Straw |
---|---|---|---|---|
1 | 2.00 | 2.63 | 3.48 | 6.42 |
2 | 6.02 | 9.48 | 9.44 | 50.45 |
3 | 3.47 | 4.85 | 5.89 | 11.46 |
4 | 4.76 | 6.85 | 7.99 | 38.99 |
5 | 2.76 | 3.98 | 4.60 | 64.18 |
6 | 4.79 | 7.16 | 7.87 | 89.59 |
7 | 4.41 | 7.18 | 6.72 | 24.95 |
8 | 3.26 | 5.24 | 5.11 | 8.82 |
9 | 5.37 | 9.92 | 7.36 | 17.46 |
10 | 3.65 | 5.41 | 5.98 | 12.90 |
11 | 3.28 | 4.67 | 5.50 | 9.93 |
12 | 7.01 | 10.47 | 11.38 | 43.33 |
13 | 3.24 | 5.37 | 4.88 | 69.11 |
14 | 4.53 | 6.04 | 7.91 | 30.00 |
15 | 4.09 | 5.72 | 6.95 | 17.77 |
16 | 4.27 | 7.92 | 5.84 | 1.18 |
17 | 4.55 | 6.69 | 7.46 | 39.75 |
18 | 6.08 | 11.12 | 8.40 | 106.69 |
19 | 3.68 | 5.12 | 6.22 | 0.64 |
20 | 3.53 | 5.01 | 5.92 | 1.53 |
21 | 4.87 | 7.47 | 7.77 | 19.30 |
22 | 4.24 | 6.44 | 6.83 | 54.28 |
23 | 2.43 | 3.36 | 4.11 | 1.41 |
24 | 8.42 | 11.77 | 14.37 | 68.65 |
25 | 3.82 | 6.81 | 5.41 | 18.41 |
26 | 4.31 | 7.84 | 6.02 | 30.01 |
27 | 4.48 | 6.40 | 7.47 | 22.51 |
28 | 3.57 | 4.84 | 6.10 | 23.76 |
29 | 5.78 | 10.10 | 8.50 | 109.51 |
30 | 3.88 | 5.34 | 6.62 | 16.25 |
31 | 5.48 | 7.95 | 9.11 | 51.08 |
32 | 2.41 | 3.73 | 3.82 | 19.43 |
33 | 5.79 | 7.67 | 10.11 | 40.13 |
34 | 5.32 | 9.51 | 7.46 | 0.46 |
35 | 4.36 | 8.29 | 5.83 | 93.69 |
36 | 2.60 | 3.31 | 4.60 | 0.86 |
37 | 3.35 | 6.36 | 4.47 | 27.90 |
38 | 3.67 | 6.64 | 5.09 | 44.22 |
39 | 7.18 | 13.54 | 9.56 | 37.94 |
40 | 4.61 | 7.94 | 6.80 | 26.54 |
Total | 175.32 | 276.14 | 274.95 | 1351.49 |
Biomass Assortment | Price (EUR/ton) | Transport Cost (EUR/km/ton) | Calorific Value (GJ/ton) |
---|---|---|---|
Low-quality stacked wood | 51.80 (a); 70.52 (b); 57.06 (c) | 0.12 | 17.5 |
Firewood | 25.20 (a); 35.62 (b); 31.34 (c) | 0.12 | 15.7 |
Forest residues | 44.20 | 0.28 | 13.0 |
Straw from agriculture | 50.56 | 0.45 | 14.0 |
Spatial Unit | Biomass (tons 103) | Energy (GJ) | Cost (EUR 103) | |||
---|---|---|---|---|---|---|
Firewood | Straw | Firewood | Straw | Firewood | Straw | |
Mielec | 2.63 | 6.42 | 41.42 | 89.88 | 116.27 | 370.82 |
Staszów | 9.48 | 7.87 | 149.31 | 110.12 | 423 | 461.65 |
Tuszyma | 4.85 | – | 76.39 | – | 219.85 | – |
Nowa Dęba | 6.85 | – | 107.89 | – | 316.61 | – |
Chmielnik | 3.98 | – | 62.69 | – | 185.19 | – |
Dąbrowa | 7.16 | – | 112.81 | – | 339.24 | – |
Łagów | 7.18 | – | 113.09 | – | 339.11 | – |
Kolbuszowa | 5.24 | – | 82.53 | – | 251.36 | – |
Dębica | 3.42 | – | 53.87 | – | 164.91 | – |
Total | 50.79 | 14.29 | 800.00 | 200.00 | 2355.54 | 832.47 |
65.08 | 1000 | 3188.01 |
1 TJ | 5 TJ | 10 TJ | 1 TJ | 5 TJ | 10 TJ | ||
---|---|---|---|---|---|---|---|
Scenario | Biomass Kind | Biomass (tons 103) | Unit Costs (EUR/MJ) | ||||
I | Firewood | 50.79 | 253.97 | 276.14 | 3.19 | 3.41 | 4.05 |
Straw | 14.29 | 71.43 | 142.86 | ||||
Residues | – | – | 217.21 | ||||
Low-quality wood | – | – | 47.26 | ||||
II | Firewood | 50.79 | 199.14 | 199.14 | 3.22 | 3.61 | 4.38 |
Straw | 14.29 | 71.43 | 142.86 | ||||
Residues | – | 66.43 | 196.23 | ||||
Low-quality wood | – | – | 132.15 | ||||
III | Straw | 14.29 | 58.36 (a) | in. | 4.37 | 4.92 (a) | in. |
Residues | 61.54 | 136.47 (a) | |||||
Low-quality wood | – | 85.37 (a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banaś, J.; Utnik-Banaś, K.; Zięba, S. Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies 2024, 17, 3136. https://doi.org/10.3390/en17133136
Banaś J, Utnik-Banaś K, Zięba S. Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies. 2024; 17(13):3136. https://doi.org/10.3390/en17133136
Chicago/Turabian StyleBanaś, Jan, Katarzyna Utnik-Banaś, and Stanisław Zięba. 2024. "Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland" Energies 17, no. 13: 3136. https://doi.org/10.3390/en17133136
APA StyleBanaś, J., Utnik-Banaś, K., & Zięba, S. (2024). Optimizing Biomass Supply Chains to Power Plants under Ecological and Social Restrictions: Case Study from Poland. Energies, 17(13), 3136. https://doi.org/10.3390/en17133136