Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope
Scenarios Analysed
2.2. Life Cycle Inventory (LCI)
2.2.1. Cultivation Stage of the Experimental Poplar Plantation
2.2.2. Chipping and Storage
2.2.3. Transportation Stage
2.2.4. Pellet Production Stage
2.2.5. Combustion and Ash Disposal
2.3. Environmental Life Cycle Impact Assessment Method
2.4. Economic Assessment Method
2.5. Economic and Environmental Indicators
- -
- Value Added per unit of Product (VAP), expressed in € kg−1 of pellet;
- -
- Value Added per unit of Energy produced (VAE), expressed in € MJ−1;
- -
- Eco-Efficiency Indicator (EEIb) of the baseline scenario production chains, expressed in € kgCO2−eq−1.
- SCV = Soil Carbon Value (€ MJ−1);
- SOCs = Sequestered soil organic carbon into the soil due to the rotation forestry cultivation as CO2-eq per MJ of thermal energy produced by poplar wood pellets (23 g C m−2 y−1 [65], equivalent to −4.77 × 10−3 kg CO2-eq MJ−1);
- AFV = Avoided fossil fuel (diesel) value (€ MJ−1);
- GWD = GWP100a of diesel supply chain (kgCO2-eq MJ−1);
- GWP = GWP100a of heat produced by wood pellets from the poplar cultivation supply chain (baseline scenario—kgCO2-eq MJ−1);
- p = market price of CO2 assessed based on the European Union Emissions Trading Scheme (EU ETS), which is a system for exchanging greenhouse gas emission quotas aimed at reducing emissions in the most energy-intensive sectors in the European Union. In the third quarter of 2023, this market price was 84.2 € MgCO2-eq−1 [85].
3. Results and Discussion
3.1. Life Cycle Impact Assessment
3.2. Economic Assessment
3.3. Eco-Efficiency of Thermal Energy from Pellet Supply Chain
3.4. Sensitivity Analysis
3.5. Future Technological Advancements in Wood Pellet Production for Improved Economic and Environmental Sustainability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
3DHS1 | 3 = years cutting cycle; D = pre-dried biomass; HS1 = Harvesting system 1 (tractor equipped with a disc saw + tractor with front grapple) |
3FHS1 | 3 = years cutting cycle; F = fresh biomass; HS1 = Harvesting system 1 (tractor equipped with a disc saw + tractor with front grapple) |
3DHS2 | 3 = years cutting cycle; D = pre-dried biomass; HS2 = Harvesting system 2 (self-propelled forage harvester + two tractors with trailers) |
3FHS2 | 3 = years cutting cycle; F = fresh biomass; HS2 = Harvesting system 2 (self-propelled forage harvester + two tractors with trailers) |
6DHS3 | 6 = years cutting cycle; D = pre-dried biomass; HS3 = Harvesting system 3 (chainsaw + tractor with winch) |
6FHS3 | 6 = years cutting cycle; F = fresh biomass; HS3 = Harvesting system 3 (chainsaw + tractor with winch) |
6DHS4 | 6 = years cutting cycle; D = pre-dried biomass; HS4 = Harvesting system 4 (excavator equipped with a forest shear + skidder with rear grapple) |
6FHS4 | 6 = years cutting cycle; F = fresh biomass; HS4 = Harvesting system 4 (excavator equipped with a forest shear + skidder with rear grapple) |
AEV | Annual Equivalent Value |
AFV | Avoided fossil fuel (diesel) value |
EEI | Eco-Efficiency Indicator |
EEIa | Additional Eco-Efficiency Indicator |
EEIb | Basic Eco-Efficiency Indicator |
EEIg | Global Eco-Efficiency Indicator |
GWP100a | Global Warming Potential over a 100-year period |
GWP | GWP100a of heat produced by wood pellet from poplar cultivation supply chain |
IPCC | Intergovernmental Panel on Climate Change |
LCA | Life Cycle Assessment |
LCC | Life Cycle Cost |
MRC | Medium Rotation Coppice |
NPV | Net Present Value |
SCV | Soil Carbon Value |
SOCs | Sequestered soil organic carbon into the soil by the rotation forestry cultivation (CO2-eq) |
VAP | Value Added per unit of Product |
VAE | Value Added per unit of Energy produced |
References
- García, R.; González-Vázquez, M.P.; Pevida, C.; Rubiera, F. Pelletization properties of raw and torrefied pine sawdust: Effect of co-pelletization, temperature, moisture content and glycerol addition. Fuel 2018, 215, 290–297. [Google Scholar] [CrossRef]
- Kizuka, R.; Ishii, K.; Sato, M.; Fujiyama, A. Characteristics of wood pellets mixed with torrefied rice straw as a biomass fuel. Int. J. Energy Environ. Eng. 2019, 10, 357–365. [Google Scholar] [CrossRef]
- Padilla-Rivera, A.; Barrette, J.; Blanchet, P.; Thiffault, E. Environmental Performance of Eastern Canadian Wood Pellets as Measured through Life Cycle Assessment. Forests 2017, 8, 352. [Google Scholar] [CrossRef]
- Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (European Climate Law) 2021. Available online: https://eur-lex.europa.eu/eli/reg/2021/1119/oj (accessed on 22 May 2024).
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as regards the promotion of energy from renewable sources and repealing Council 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023L2413 (accessed on 22 May 2024).
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources European Commission. Off. J. Eur. Union 2018, L328, 82–209. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj (accessed on 22 May 2024).
- Civitarese, V.; Acampora, A.; Sperandio, G.; Bassotti, B.; Latterini, F.; Picchio, R. A Comparison of the Qualitative Characteristics of Pellets Made from Different Types of Raw Materials. Forests 2023, 14, 2025. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resour. Convers. 2018, 1, 44–54. [Google Scholar] [CrossRef]
- Latterini, F.; Civitarese, V.; Walkowiak, M.; Picchio, R.; Karaszewski, Z.; Venanzi, R.; Bembenek, M.; Mederski, P.S. Quality of Pellets Obtained from Whole Trees Harvested from Plantations, Coppice Forests and Regular Thinnings. Forests 2022, 13, 502. [Google Scholar] [CrossRef]
- Mendonça, H.L.; van Aduard de Macedo-Soares, T.D.L.; Fonseca, M.V.d.A. Working towards a framework based on mission-oriented practices for assessing renewable energy innovation policies. J. Clean. Prod. 2018, 193, 709–719. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Godina, R.; Matias, J.C.O.; Catalão, J.P.S. Evaluation of the utilization of woodchips as fuel for industrial boilers. J. Clean. Prod. 2019, 223, 270–277. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Tumuluru, J.S. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst. Eng. 2014, 119, 44–57. [Google Scholar] [CrossRef]
- Stachowicz, P.; Stolarski, M.J. Short rotation woody crops and forest biomass sawdust mixture pellet quality. Ind. Crops Prod. 2023, 197, 116604. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Stachowicz, P.; Dudziec, P. Wood pellet quality depending on dendromass species. Renew. Energy 2022, 199, 498–508. [Google Scholar] [CrossRef]
- Purohit, P.; Chaturvedi, V. Biomass pellets for power generation in India: A techno-economic evaluation. Environ. Sci. Pollut. Res. 2018, 25, 29614–29632. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, D.; San Miguel, G.; Corona, B.; López, F.R.R. LCA of a multifunctional bioenergy chain based on pellet production. Fuel 2018, 215, 601–611. [Google Scholar] [CrossRef]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Cardozo, E.; Malmquist, A. Performance comparison between the use of wood and sugarcane bagasse pellets in a Stirling engine micro-CHP system. Appl. Therm. Eng. 2019, 159, 113945. [Google Scholar] [CrossRef]
- Cao, L.; Yuan, X.; Li, H.; Li, C.; Xiao, Z.; Jiang, L.; Huang, B.; Xiao, Z.; Chen, X.; Wang, H.; et al. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets. Bioresour. Technol. 2015, 185, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Hoefnagels, R.; Junginger, M.; Faaij, A. The economic potential of wood pellet production from alternative, low-value wood sources in the southeast of the U.S. Biomass Bioenergy 2014, 71, 443–454. [Google Scholar] [CrossRef]
- Harun, N.Y.; Afzal, M.T. Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. Procedia Eng. 2016, 148, 93–99. [Google Scholar] [CrossRef]
- Bioenergy Europe Policy Brief: Pellets—A Growing Market. Available online: https://bioenergyeurope.org/wp-content/uploads/2023/12/Pellets_Policy-Brief23.pdf (accessed on 18 March 2024).
- ENplus Manuale ENplus, Parte 3—Requisiti di qualità del pellet—V 3.0 (ENplus Manual, Part 3—Quality Requirements for Pellets); European Pellet Council (EPC) c/o, Ed. 2015. Available online: https://www.pelletsfuso.com/wp-content/uploads/2021/04/MANUALE-EN-PLUS-1.pdf (accessed on 22 May 2024).
- Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.-A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets. Fuel Process. Technol. 2008, 89, 1324–1329. [Google Scholar] [CrossRef]
- Ilari, A.; Foppa Pedretti, E.; De Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Boschiero, M.; Pierobon, F.; Cavalli, R.; Zanetti, M. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11, 1127. [Google Scholar] [CrossRef]
- Bacenetti, J.; Bergante, S.; Facciotto, G.; Fiala, M. Woody biofuel production from short rotation coppice in Italy: Environmental-impact assessment of different species and crop management. Biomass Bioenergy 2016, 94, 209–219. [Google Scholar] [CrossRef]
- Rajabi Hamedani, S.; Colantoni, A.; Gallucci, F.; Salerno, M.; Silvestri, C.; Villarini, M. Comparative Energy and Environmental Analysis of Agro-Pellet Production from Orchard Woody Biomass. Biomass Bioenergy 2019, 129, 105334. [Google Scholar] [CrossRef]
- Kylili, A.; Christoforou, E.; Fokaides, P.A. Environmental Evaluation of Biomass Pelleting Using Life Cycle Assessment. Biomass Bioenergy 2016, 84, 107–117. [Google Scholar] [CrossRef]
- Laschi, A.; Marchi, E.; González-García, S. Environmental performance of wood pellets’ production through life cycle analysis. Energy 2016, 103, 469–480. [Google Scholar] [CrossRef]
- Monteleone, B.; Chiesa, M.; Marzuoli, R.; Verma, V.K.; Schwarz, M.; Carlon, E.; Schmidl, C.; Ballarin Denti, A. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions. Appl. Energy 2015, 155, 160–170. [Google Scholar] [CrossRef]
- Röder, M.; Whittaker, C.; Thornley, P. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenergy 2014, 79, 50–63. [Google Scholar] [CrossRef]
- McNamee, P.; Adams, P.W.R.; McManus, M.C.; Dooley, B.; Darvell, L.I.; Williams, A.; Jones, J.M. An assessment of the torrefaction of North American pine and life cycle greenhouse gas emissions. Energy Convers. Manag. 2016, 113, 177–188. [Google Scholar] [CrossRef]
- Visser, L.; Hoefnagels, R.; Junginger, M. Wood pellet supply chain costs—A review and cost optimization analysis. Renew. Sustain. Energy Rev. 2020, 118, 109506. [Google Scholar] [CrossRef]
- Pergola, M.; Gialdini, A.; Celano, G.; Basile, M.; Caniani, D.; Cozzi, M.; Gentilesca, T.; Mancini, I.M.; Pastore, V.; Romano, S.; et al. An environmental and economic analysis of the wood-pellet chain: Two case studies in Southern Italy. Int. J. Life Cycle Assess. 2018, 23, 1675–1684. [Google Scholar] [CrossRef]
- Shahrukh, H.; Oyedun, A.O.; Kumar, A.; Ghiasi, B.; Kumar, L.; Sokhansanj, S. Techno-economic assessment of pellets produced from steam pretreated biomass feedstock. Biomass Bioenergy 2016, 87, 131–143. [Google Scholar] [CrossRef]
- Trømborg, E.; Ranta, T.; Schweinle, J.; Solberg, B.; Skjevrak, G.; Tiffany, D.G. Economic sustainability for wood pellets production—A comparative study between Finland, Germany, Norway, Sweden and the US. Biomass Bioenergy 2013, 57, 68–77. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhang, X.; Grushecky, S. Environmental and Economic Assessments and Uncertainties of Multiple Lignocellulosic Biomass Utilization for Bioenergy Products: Case Studies. Energies 2020, 13, 6277. [Google Scholar] [CrossRef]
- Nishiguchi, S.; Tabata, T. Assessment of social, economic, and environmental aspects of woody biomass energy utilization: Direct burning and wood pellets. Renew. Sustain. Energy Rev. 2016, 57, 1279–1286. [Google Scholar] [CrossRef]
- Pa, A.; Bi, X.T.; Sokhansanj, S. Evaluation of wood pellet application for residential heating in British Columbia based on a streamlined life cycle analysis. Biomass Bioenergy 2013, 49, 109–122. [Google Scholar] [CrossRef]
- Boukherroub, T.; LeBel, L.; Lemieux, S. An integrated wood pellet supply chain development: Selecting among feedstock sources and a range of operating scales. Appl. Energy 2017, 198, 385–400. [Google Scholar] [CrossRef]
- Paolotti, L.; Martino, G.; Marchini, A.; Pascolini, R.; Boggia, A. Economic and environmental evaluation of transporting imported pellet: A case study. Biomass Bioenergy 2015, 83, 340–353. [Google Scholar] [CrossRef]
- Pa, A.; Craven, J.S.; Bi, X.T.; Melin, S.; Sokhansanj, S. Environmental footprints of British Columbia wood pellets from a simplified life cycle analysis. Int. J. Life Cycle Assess. 2012, 17, 220–231. [Google Scholar] [CrossRef]
- Civitarese, V.; Sperandio, G.; Acampora, A.; Santangelo, E.; Tomasone, R. Pioppo da SRF per produrre pellet. Caratterizzazione del materiale di 3 e 6 anni (Poplar from SRF to produce pellets. Characterisation of 3- and 6-year-old material). Sherwood 2018. [Google Scholar]
- Civitarese, V.; Acampora, A.; Sperandio, G.; Assirelli, A.; Picchio, R. Production of Wood Pellets from Poplar Trees Managed as Coppices with Different Harvesting Cycles. Energies 2019, 12, 2973. [Google Scholar] [CrossRef]
- Civitarese, V.; Acampora, A.; Sperandio, G.; Tomasone, R.; Caracciolo, G.; Gallucci, F.; Carnevale, M.; Assirelli, A. Poplar Wood from SRF for Pellet Production. Characterization of the Raw Materials Derived from 3 and 6 Years Old Trees. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 299–302. [Google Scholar]
- Civitarese, V.; Sperandio, G. Raccolta meccanizzata, aspetti tecnici e produttivi. In Manuale Tecnico: Processi di Valorizzazione del Cippato Agroforestale; 2015. [Google Scholar]
- Anerud, E.; Krigstin, S.; Routa, J.; Brännström, H.; Arshadi, M.; Helmeste, C.; Bergström, D.; Egnell, G. Dry matter losses during biomass storage. Measures to minimize feedstock degradation. Renew. Bioenergy Res. 2019, 45. [Google Scholar]
- Sperandio, G.; Acampora, A.; Del Giudice, A.; Civitarese, V. Models for the Evaluation of Productivity and Costs of Mechanized Felling on Poplar Short Rotation Coppice in Italy. Forests 2021, 12, 954. [Google Scholar] [CrossRef]
- Costa, C.; Sperandio, G.; Verani, S. Use of multivariate approaches in biomass energy plantation harvesting: Logistics advantages. Agric. Eng. Int. CIGR J. 2014, 70–79. [Google Scholar]
- Maesano, M.; Zimbalatti, G.; Scarascia Mugnozza, G.; Macrì, G.; Antonucci, F.; Costa, C.; Sperandio, G.; Proto, A.R. A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction. Croat. J. For. Eng. 2020, 41, 35–47. [Google Scholar] [CrossRef]
- Di Matteo, G.; Sperandio, G.; Verani, S. Field performance of poplar for bioenergy in southern Europe after two coppicing rotations: Effects of clone and planting density. iForest 2012, 5, 224–229. [Google Scholar] [CrossRef]
- Verani, S.; Sperandio, G.; Picchio, R.; Marchi, E.; Costa, C. Sustainability assessment of a self-consumption wood-energy chain on small scale for heat generation in central Italy. Energies 2015, 8, 5182–5197. [Google Scholar] [CrossRef]
- Di Matteo, G.; Nardi, P.; Verani, S.; Sperandio, G. Physiological adaptability of Poplar clones selected for bioenergy purposes under non-irrigated and suboptimal site conditions: A case study in Central Italy. Biomass Bioenergy 2015, 81, 183–189. [Google Scholar] [CrossRef]
- Bascietto, M.; Santangelo, E.; Beni, C. Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status. Land 2021, 10, 80. [Google Scholar] [CrossRef]
- Sperandio, G.; Pagano, M.; Acampora, A.; Civitarese, V.; Cedrola, C.; Mattei, P.; Tomasone, R. Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations. Sustainability 2022, 14, 13991. [Google Scholar] [CrossRef]
- Brentrup, F.; Kusters, J.; Lammel, J.; Kuhlmann, H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 2000, 5, 349–357. [Google Scholar] [CrossRef]
- De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.; Mosier, A.; Rypdal, K. IPCC guidelines for national greenhouse gas inventories, Volume 4, Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In Technical Report. Technical Report 4-88788-032-4, Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Dijkman, T.J.; Birkved, M.; Hauschild, M.Z. PestLCI 2.0: A second generation model for estimating emissions of pesticides from arable land in LCA. Int. J. Life Cycle Assess. 2012, 17, 973–986. [Google Scholar] [CrossRef]
- Sperandio, G.; Suardi, A.; Acampora, A.; Civitarese, V. Environmental Sustainability of Heat Produced by Poplar Short-Rotation Coppice (SRC) Woody Biomass. Forests 2021, 12, 878. [Google Scholar] [CrossRef]
- Dewar, R.C.; Cannell, M.G.R. Carbon sequestration in the trees, products and soils of forest plantations: An analysis using UK examples. Tree Physiol. 1992, 11, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wang, L.; Ren, H.; Zhang, X. Biomass production and carbon sequestration of a short-rotation forest with different poplar clones in northwest China. Sci. Total Environ. 2017, 586, 1135–1140. [Google Scholar] [CrossRef]
- Fang, S.; Xue, J.; Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J. Environ. Manag. 2007, 85, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Garten, C.T.; Wullschleger, S.D.; Classen, A.T. Review and model-based analysis of factors influencing soil carbon sequestration under hybrid poplar. Biomass Bioenergy 2011, 35, 214–226. [Google Scholar] [CrossRef]
- Lerma-Arce, V.; Oliver-Villanueva, J.-V.; Segura-Orenga, G. Influence of raw material composition of Mediterranean pinewood on pellet quality. Biomass Bioenergy 2017, 99, 90–96. [Google Scholar] [CrossRef]
- Terzopoulou, P.; Kamperidou, V.; Lykidis, C. Cypress Wood and Bark Residues Chemical Characterization and Utilization as Fuel Pellets Feedstock. Forests 2022, 13, 1303. [Google Scholar] [CrossRef]
- Thiffault, E.; Barrette, J.; Blanchet, P.; Nguyen, Q.N.; Adjalle, K. Optimizing Quality of Wood Pellets Made of Hardwood Processing Residues. Forests 2019, 10, 607. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Arshadi, M.; Gref, R.; Geladi, P.; Dahlqvist, S.-A.; Lestander, T. The influence of raw material characteristics on the industrial pelletizing process and pellet quality. Fuel Process. Technol. 2008, 89, 1442–1447. [Google Scholar] [CrossRef]
- Monedero, E.; Portero, H.; Lapuerta, M. Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Process. Technol. 2015, 132, 15–23. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Labbé, R.; Paczkowski, S.; Knappe, V.; Russ, M.; Wöhler, M.; Pelz, S. Effect of feedstock particle size distribution and feedstock moisture content on pellet production efficiency, pellet quality, transport and combustion emissions. Fuel 2020, 263, 116662. [Google Scholar] [CrossRef]
- Yılmaz, H.; Çanakcı, M.; Topakcı, M.; Karayel, D. The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: A case study for greenhouse melon residues. Biomass Bioenergy 2021, 150, 106125. [Google Scholar] [CrossRef]
- Anukam, A.; Berghel, J.; Henrikson, G.; Frodeson, S.; Ståhl, M. A review of the mechanism of bonding in densified biomass pellets. Renew. Sustain. Energy Rev. 2021, 148, 111249. [Google Scholar] [CrossRef]
- Zhao, H.-X.; Zhou, F.-S.; Evelina, L.M.A.; Liu, J.-L.; Zhou, Y. A review on the industrial solid waste application in pelletizing additives: Composition, mechanism and process characteristics. J. Hazard. Mater. 2022, 423, 127056. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef]
- Miranda, T.; Montero, I.; Sepúlveda, F.; Arranz, J.; Rojas, C.; Nogales, S. A Review of Pellets from Different Sources. Materials 2015, 8, 1413–1427. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Sokhansanj, S.; Bi, X.; Turhollow, A. Economics of producing fuel pellets from biomass. Appl. Eng. Agric. 2006, 22, 421–426. [Google Scholar] [CrossRef]
- Krokida, M.K.; Maroulis, Z.B.; Kremalis, C. Process design of rotary dryers for olive cake. Dry. Technol. 2002, 20, 771–788. [Google Scholar] [CrossRef]
- Fantozzi, F.; Buratti, C. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy 2010, 34, 1796–1804. [Google Scholar] [CrossRef]
- Miyata, E.S. Determining Fixed and Operating Costs of Logging Equipment; General Technical Report NC-55; Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1980. [Google Scholar]
- MISE. Update of the Rate to Be Applied for Transactions of Discounting and Revaluation for the Purposes of Granting and Disbursement of Facilities for Enterprises; 2022; p. 136. [Google Scholar]
- Hartini, S.; Wicaksono, P.; Purbasari, A.; Fatliana, A.N.; Handayani, N.U.; Rashif, M.N. Eco-efficiency index of the recycling process of fuel husks into briquettes in Tofu SMEs using life cycle assessment. IOP Conf. Ser. Earth Environ. Sci. 2023, 1268, 012073. [Google Scholar] [CrossRef]
- GSE Gestore Servizi Energetici. EU ETS Rapporto Sulle aste di Quote Europee di Emissioni—III Trimestre 2023. Available online: https://www.gse.it (accessed on 13 December 2023).
- Kabir, M.R.; Kumar, A. Comparison of the energy and environmental performances of nine biomass/coal co-firing pathways. Bioresour. Technol. 2012, 124, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Monarca, D.; Cecchini, M.; Colantoni, A. Plant for the production of chips and pellet: Technical and economic aspects of an case study in the central Italy. In Proceedings of the Computational Science and Its Applications-ICCSA 2011: International Conference, Santander, Spain, 20–23 June 2011; Proceedings, Part IV 11. Springer: Berlin/Heidelberg, Germany, 2011; pp. 296–306. [Google Scholar]
- Sikkema, R.; Steiner, M.; Junginger, M.; Hiegl, W.; Hansen, M.T.; Faaij, A. The European wood pellet markets: Current status and prospects for 2020. Biofuels Bioprod. Biorefining 2011, 5, 250–278. [Google Scholar] [CrossRef]
- Bidini, G.; Cotana, F.; Buratti, C.; Fantozzi, F.; Barbanera, M. Analisi del ciclo di vita del pellet da SRF attraverso misure dirette dei consumi energetici (Life cycle analysis of pellets from SRF through direct measurements of energy consumption). In Proceedings of the Congresso Nazionale ATI–Perugia, Perugia, Italy, 12–15 September 2006; Volume 12, p. 15. [Google Scholar]
- Magnani, F.; Cantoni, L. Biomasse forestali e produzione di energia: Un caso di studio in Emilia-Romagna. Forest 2005, 2, 7–11. [Google Scholar] [CrossRef]
- Frau, C.; Loria, E.; Madeddu, A.; Fadda, M. Studio Tecnico-Economico Sulla Applicabilità del Processo di Co-Gassificazione di Carbone e Biomasse con Produzione di Energia Elettrica nel Preesistente Impianto di Gassificazione Sotacarbo da 5 MWt; Accordo di Programma Ministero dello Sviluppo Economico—ENEA: Roma, Italy, 2012. [Google Scholar]
Scenarios | Cutting Cycle (Years) | Harvesting | Extraction of Wood Chips or Whole Trees | Handling/Loading of Wood Chips | On-Farm Drying Stage | Chipping |
---|---|---|---|---|---|---|
3DHS1 | 3 | Tree cutting performed with a tractor (59 kW) equipped with a disc saw that cut and arranged the plants on the ground transversely to the running direction | Extraction of the whole trees carried out with a tractor (75 kW) equipped with a front grapple (M.C. = 52%) [45] | - | Field-dried whole trees to a M.C. = 13.6% − D.M. loss = 10% [45,46] | Chipper powered by tractor (177 kW); forestry loader equipped with grapples (75 kW) to load the chipper (Biomass losses 3% [47]) |
3FHS1 | No drying stage (M.C. = 52%) | |||||
DHS2 | Modified self-propelled forage harvester (350 kW) equipped with a dedicated cutting head; 2 Tractors (84 kW) with high-sided trailer for transporting wood chips. The harvesting and chipping operations were performed continuously with a single passage of the machine in the field (Biomass losses 0.98%) [48] | Tractor (74 kW) with shovel | Wood chips dried in piles to a M.C. = 34.4% − D.M. loss = 11.9% (average value from [49]) | - | ||
3FHS2 | No drying stage (M.C. = 52%) | |||||
6DHS3 | 6 | Felling performed by an operator with a chainsaw (3 kW) | Extraction carried out by two operators with a tractor equipped with a winch (70 kW) (M.C. = 54%) [45] | - | Field-dried whole trees to a M.C. = 32% − D.M. loss = 10% [45,46] | Chipper powered by tractor (177 kW); forestry loader equipped with grapples (75 kW) to load the chipper (Biomass losses 3%) [47] |
6FHS3 | No drying stage (M.C. = 54%) | |||||
6DHS4 | Felling and aligning and/or stacking trees curried out by an operator and excavator equipped with a forest shear (69 kW) | Extraction of whole or sectioned trees with a skidder (90 kW) with rear grapple and an operator (M.C. = 54%) [45] | Field-dried whole trees to a M.C. = 32% − D.M. loss = 10% [45,46] | |||
6FHS4 | No drying stage (M.C. = 54%) |
Wood Pellet Phases | 3DHS1 | 3FHS1 | 3DHS2 | 3FHS2 | 6DHS3 | 6FHS3 | 6DHS4 | 6FHS4 |
---|---|---|---|---|---|---|---|---|
Cultivation stage | 3.53 × 10−3 | 3.43 × 10−3 | 4.28 × 10−3 | 3.89 × 10−3 | 5.16 × 10−3 | 4.82 × 10−3 | 5.76 × 10−3 | 5.39 × 10−3 |
Chipping phase at the landing site | 1.81 × 10−3 | 1.75 × 10−3 | 0.00 × 10 | 0.00 × 10 | 2.4 × 10−3 | 1.74 × 10−3 | 2.4 × 10−3 | 1.74 × 10−3 |
Woodchip storage and handling at the farm stage | 0.00 × 10 | 0.00 × 10 | 8.52 × 10−4 | 1.09 × 10−3 | 0.00 × 10 | 0.00 × 10 | 0.00 × 10+00 | 0.00 × 10+00 |
Woodchip transport to the pellet plant | 1.2 × 10−3 | 1.74 × 10−3 | 1.32 × 10−3 | 1.75 × 10−3 | 1.26 × 10−3 | 1.72 × 10−3 | 1.25 × 10−3 | 1.72 × 10−3 |
Pellet production stage | 5.81 × 10−3 | 1.11 × 10−2 | 7.77 × 10−3 | 1.11 × 10−2 | 8.4 × 10−3 | 1.21 × 10−2 | 8.06 × 10−3 | 1.21 × 10−2 |
Wood pellets transport to the end-user | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 | 1.98 × 10−3 | 1.98 × 10−3 | 1.98 × 10−3 | 1.98 × 10−3 |
Pellet boiler management | 8.36 × 10−4 | 8.41 × 10−4 | 7.81 × 10−4 | 8.41 × 10−4 | 8.20 × 10−4 | 8.20 × 10−4 | 8.07 × 10−4 | 8.07 × 10−4 |
Heat—domestic pellet stove (Total) | 1.50 × 10−2 | 2.09 × 10−2 | 1.70 × 10−2 | 2.07 × 10−2 | 1.93 × 10−2 | 2.32 × 10−2 | 1.99 × 10−2 | 2.37 × 10−2 |
Scenario | Cutting Cycle | GWP (Baseline Scenarios) (kg CO2-eq MJ−1) | SOCs (kg CO2-eq MJ−1) | GWD (kg CO2-eq MJ−1) | SCV (€ MJ−1) | AFV (€ MJ−1) |
---|---|---|---|---|---|---|
3DHS1 | 3 | 1.50 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 6.20 × 10−3 |
3FHS1 | 3 | 2.09 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.70 × 10−3 |
3DHS2 | 3 | 1.70 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 6.3 × 10−3 |
3FHS2 | 3 | 2.07 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.72 × 10−3 |
6DHS3 | 6 | 1.93 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.83 × 10−3 |
6FHS3 | 6 | 2.32 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.51 × 10−3 |
6DHS4 | 6 | 1.99 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.78 × 10−3 |
6FHS4 | 6 | 2.37 × 10−2 | −4.77 × 10−3 | −8.86 × 10−2 | 4.2 × 10−4 | 5.46 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperandio, G.; Suardi, A.; Acampora, A.; Civitarese, V. Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations. Energies 2024, 17, 3137. https://doi.org/10.3390/en17133137
Sperandio G, Suardi A, Acampora A, Civitarese V. Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations. Energies. 2024; 17(13):3137. https://doi.org/10.3390/en17133137
Chicago/Turabian StyleSperandio, Giulio, Alessandro Suardi, Andrea Acampora, and Vincenzo Civitarese. 2024. "Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations" Energies 17, no. 13: 3137. https://doi.org/10.3390/en17133137
APA StyleSperandio, G., Suardi, A., Acampora, A., & Civitarese, V. (2024). Eco-Efficiency of Pellet Production from Dedicated Poplar Plantations. Energies, 17(13), 3137. https://doi.org/10.3390/en17133137