Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman
Abstract
:1. Introduction
2. Experimental Setup and Techniques
3. Results and Discussion
3.1. Performance of Coated PV Panel
3.2. Effects of Coating Layers on the Temperature and Voltage of PV Panels
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asiedu, S.T.; Nyarko, F.K.A.; Boahen, S.; Effah, F.B.; Asaaga, B.A. Machine learning forecasting of solar PV production using single and hybrid models over different time horizons. Heliyon 2024, 10, e28898. [Google Scholar] [CrossRef]
- Rey-Costa, E.; Elliston, B.; Green, D.; Abramowitz, G. Firming 100% renewable power: Costs and opportunities in Australia’s National Electricity Market. Renew. Energy 2023, 219, 119416. [Google Scholar] [CrossRef]
- Imam, A.A.; Abusorrah, A.; Marzband, M. Potentials and opportunities of solar PV and wind energy sources in Saudi Arabia: Land suitability, techno-socio-economic feasibility, and future variability. Results Eng. 2024, 21, 101785. [Google Scholar] [CrossRef]
- Zeb, K.; Uddin, W.; Khan, M.A.; Ali, Z.; Ali, M.U.; Christofides, N.; Kim, H.J. A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system. Renew. Sustain. Energy Rev. 2018, 94, 1120–1141. [Google Scholar] [CrossRef]
- Allouhi, A.; Rehman, S.; Buker, M.S.; Said, Z. Up-to-date literature review on Solar PV systems: Technology progress, market status and R&D. J. Clean. Prod. 2022, 362, 132339. [Google Scholar] [CrossRef]
- Khalid, H.M.; Rafique, Z.; Muyeen, S.M.; Raqeeb, A.; Said, Z.; Saidur, R.; Sopian, K. Dust accumulation and aggregation on PV panels: An integrated survey on impacts, mathematical models, cleaning mechanisms, and possible sustainable solution. Sol. Energy 2023, 251, 261–285. [Google Scholar] [CrossRef]
- Chala, G.T.; Sulaiman, S.A.; Al Alshaikh, S.M. Effects of cooling and interval cleaning on the performance of soiled photovoltaic panels in Muscat, Oman. Results Eng. 2024, 21, 101933. [Google Scholar] [CrossRef]
- Al-Doori, G.F.; Mahmood, R.A.; Al-Janabi, A.; Hassan, A.M.; Chala, G.T. Impact of Surface Temperature of a Photovoltaic Solar Panel on Voltage Production. In Energy and Environment in the Tropics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 81–93. [Google Scholar]
- Batool, I.; Shahzad, N.; Shahzad, R.; Naseem Satti, A.; Liaquat, R.; Waqas, A.; Imran Shahzad, M. Self-cleaning study of SiO2 modified TiO2 nanofibrous thin films prepared via electrospinning for application in solar cells. Sol. Energy 2024, 268, 112271. [Google Scholar] [CrossRef]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Boro, B.; Gogoi, B.; Rajbongshi, B.M.; Ramchiary, A. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 2018, 81, 2264–2270. [Google Scholar] [CrossRef]
- Yadav, V.; Mishra, A. Role of nanocoating in maintaining solar PV efficiency: An overview. Int. J. Appl. Sci. Technol. 2013, 21–28. [Google Scholar]
- Mozumder, M.S.; Mourad, A.-H.I.; Pervez, H.; Surkatti, R.J.S.E.M.; Cells, S. Recent developments in multifunctional coatings for solar panel applications: A review. Sol. Energy Mater. Sol. Cells 2019, 189, 75–102. [Google Scholar] [CrossRef]
- Vargas-Bernal, R. Nanocoatings for Energy Generation and Conservation of Solar Cells. In Sustainable Approach to Protective Nanocoatings; IGI Global: Hershey, PA, USA, 2024; pp. 88–112. [Google Scholar]
- Bai, Y.; Zhang, H.; Shao, Y.; Zhang, H.; Zhu, J.J.C. Recent progresses of superhydrophobic coatings in different application fields: An overview. Coatings 2021, 11, 116. [Google Scholar] [CrossRef]
- Chala, G.T.; Al Alshaikh, S.M. Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review. Energies 2023, 16, 7919. [Google Scholar] [CrossRef]
- Elsaadawi, Y.; Tayel, S.A.; El-Maaty, A.A.E.; Mostafa, E. Hydrophobic nanocoating impacts on the PV panels’ current-voltage and power-voltage curves. Al-Azhar J. Agric. Eng. 2023, 4, 1–9. [Google Scholar]
- Ehsan, R.M.; Simon, S.P.; Sundareswaran, K.; Kumar, K.A.; Sriharsha, T. Effect of Soiling on Photovoltaic Modules and Its Mitigation Using Hydrophobic Nanocoatings. IEEE J. Photovolt. 2021, 11, 742–749. [Google Scholar] [CrossRef]
- Aldawoud, A.; Aldawoud, A.; Aryanfar, Y.; Assad, M.E.H.; Sharma, S.; Alayi, R. Reducing PV soiling and condensation using hydrophobic coating with brush and controllable curtains. Int. J. Low-Carbon Technol. 2022, 17, 919–930. [Google Scholar] [CrossRef]
- Al Bakri, H.; Abu Elhaija, W.; Al Zyoud, A. Solar photovoltaic panels performance improvement using active self-cleaning nanotechnology of SurfaShield G. Energy 2021, 223, 119908. [Google Scholar] [CrossRef]
- Abbood, A.M.; Abed, Q.A. Using the nano-composite coating technology to improve PV solar cell performance: A review. AIP Conf. Proc. 2023, 2776, 090001. [Google Scholar] [CrossRef]
- Ehsan, R.M.; Simon, S.P.; Kinattingal, S.; Kumar, K.A.; Sriharsha, T. Effects of nanocoatings on the temperature-dependent cell parameters and power generation of photovoltaic panels. Appl. Nanosci. 2022, 12, 3945–3962. [Google Scholar] [CrossRef]
- Al-Badra, M.Z.; Abd-Elhady, M.S.; Kandil, H.A. A novel technique for cleaning PV panels using antistatic coating with a mechanical vibrator. Energy Rep. 2020, 6, 1633–1637. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Ramalingam, V. Dust Repellent Nano Coating for Operational Efficiency Enhancement of Solar Photovoltaic System. Appl. Sol. Energy 2022, 58, 210–216. [Google Scholar] [CrossRef]
- Elnozahy, A.; Abd-Elbary, H.; Abo-Elyousr, F.K. Efficient energy harvesting from PV Panel with reinforced hydrophilic nano-materials for eco-buildings. Energy Built Environ. 2024, 5, 393–403. [Google Scholar] [CrossRef]
- Aljdaeh, E.; Kamwa, I.; Hammad, W.; Abuashour, M.I.; Sweidan, T.e.; Khalid, H.M.; Muyeen, S. Performance enhancement of self-cleaning hydrophobic nanocoated photovoltaic panels in a dusty environment. Energies 2021, 14, 6800. [Google Scholar] [CrossRef]
- Fathi, M.; Abderrezek, M.; Friedrich, M. Reducing dust effects on photovoltaic panels by hydrophobic coating. Clean Technol. Environ. Policy 2017, 19, 577–585. [Google Scholar] [CrossRef]
- Pedrazzi, S.; Allesina, G.; Muscio, A. Are Nano-Composite Coatings the Key for Photovoltaic Panel Self-Maintenance: An Experimental Evaluation. Energies 2018, 11, 3448. [Google Scholar] [CrossRef]
- Rakesh Tej Kumar, K.; Ramakrishna, M.; Durga Sukumar, G. A review on PV cells and nanocomposite-coated PV systems. Int. J. Energy Res. 2018, 42, 2305–2319. [Google Scholar] [CrossRef]
- Manju, B.; Bari, A.; Pavan, C. Automatic solar panel cleaning system. Int. J. Adv. Sci. Res. Eng. 2018, 4, 26–31. [Google Scholar]
- Tayel, S.A.; Abu El-Maaty, A.E.; Mostafa, E.M.; Elsaadawi, Y.F. Enhance the performance of photovoltaic solar panels by a self-cleaning and hydrophobic nanocoating. Sci. Rep. 2022, 12, 21236. [Google Scholar] [CrossRef]
- Alamri, H.R.; Rezk, H.; Abd-Elbary, H.; Ziedan, H.A.; Elnozahy, A. Experimental investigation to improve the energy efficiency of solar PV panels using hydrophobic SiO2 nanomaterial. Coatings 2020, 10, 503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chala, G.T.; Sulaiman, S.A.; Chen, X.; Al Shamsi, S.S. Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman. Energies 2024, 17, 2871. https://doi.org/10.3390/en17122871
Chala GT, Sulaiman SA, Chen X, Al Shamsi SS. Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman. Energies. 2024; 17(12):2871. https://doi.org/10.3390/en17122871
Chicago/Turabian StyleChala, Girma T., Shaharin A. Sulaiman, Xuecheng Chen, and Salim S. Al Shamsi. 2024. "Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman" Energies 17, no. 12: 2871. https://doi.org/10.3390/en17122871
APA StyleChala, G. T., Sulaiman, S. A., Chen, X., & Al Shamsi, S. S. (2024). Effects of Nanocoating on the Performance of Photovoltaic Solar Panels in Al Seeb, Oman. Energies, 17(12), 2871. https://doi.org/10.3390/en17122871