Large-Eddy vs. Reynolds-Averaged Navier–Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation †
Abstract
:1. Introduction
2. Problem Description
3. Formulation
3.1. Governing Equations for RANS
3.1.1. Eddy-Viscosity Model
3.1.2. Reynolds Stress Model
3.2. Governing Equations for Large-Eddy Simulation
3.3. Eddy Diffusivity Hypothesis (EDH)
4. Numerical Method of Solution
5. Results
5.1. Heat-Transfer Coefficient
5.2. Turbulent Kinetic Energy and Reynolds Stresses
5.3. Pressure Strain Rate, Pressure Diffusion, and Turbulent Transport
5.4. Eddy Diffusivity Hypothesis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Dh | hydraulic diameter (Dh = 4Ac/C, where Ac and C are the duct’s cross-sectional area and its perimeter) |
h | heat-transfer coefficient |
I | turbulent Intensity |
k | turbulent kinetic energy |
k | thermal conductivity |
P | pressure |
Prt | turbulent Prandtl number |
q” | heat flux |
Re | Reynolds number (Re = ρVinDh/μ) |
T | temperature |
Tb | bulk temperature |
u, v, w | x, y, and z components of the velocity vector |
uτ | friction velocity (uτ = ) |
X, Y, Z | Cartesian coordinates for the U-duct (X is the streamwise direction) |
nondimensional normal distance from wall = normal distance from wall) | |
Kronecker delta | |
dissipation rate of turbulent kinetic energy | |
constant | |
μ | dynamic viscosity |
kinematic viscosity | |
turbulent kinematic viscosity | |
turbulent viscosity | |
density | |
specific turbulent dissipation |
Appendix A
Appendix B
References
- Goldstein, R. (Ed.) Heat Transfer in Gas Turbine Systems; Annals of the New York Academy of Sciences: New York, NY, USA, 2001; Volume 934. [Google Scholar]
- Sundén, B.; Faghri, M. (Eds.) Heat Transfer in Gas Turbines; WIT Press: Southhampton, UK, 2001. [Google Scholar]
- Han, J.C. Fundamental Gas Turbine Heat Transfer. J. Therm. Sci. Eng. Appl. 2013, 5, 021007. [Google Scholar] [CrossRef]
- Chiu, M.; Siw, S.C. Recent Advances of Internal Cooling Techniques for Gas Turbine Airfoils. J. Therm. Sci. Eng. Appl. 2013, 5, 021008. [Google Scholar] [CrossRef]
- Ligrani, P. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines. Int. J. Rotating Mach. 2013, 2013, 275653. [Google Scholar] [CrossRef]
- Shih, T.I.-P.; Yang, V. (Eds.) Turbine Aerodynamics, Heat Transfer, Materials, and Mechanics; Progress in Astronautics and Aeronautics; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2014; Volume 243. [Google Scholar]
- Han, J.C.; Dutta, S.; Ekkad, S.V. Gas Turbine Heat Transfer and Cooling Technology; Taylor & Francis: New York, NY, USA, 2015. [Google Scholar]
- Town, J.; Straub, D.; Blak, J.; Thole, K.; Shih, T.I.-P. State-of-the-Art Cooling Technology for a Turbine Rotor Blade. ASME J. Turbomach. 2018, 140, 071007. [Google Scholar] [CrossRef]
- Tafti, D.K.; He, L.; Nagendra, K. Large Eddy Simulation for Predicting Turbulent Heat Transfer in Gas Turbines. Philos. Trans. R. Soc. A 2013, 372, 20130322. [Google Scholar] [CrossRef]
- Sarkar, A.; So, R.M.C. A Critical Evaluation of Near-Wall Two Equation Models Against Direct Numerical Simulation Data. Int. J. Heat Fluid Flow 1977, 18, 197–208. [Google Scholar] [CrossRef]
- Patel, V.C.; Rodi, W.; Scheuerer, G. Turbulence Models for Near Wall and Low-Reynolds-Number Flows: A Review. AIAA J. 1985, 23, 1308–1319. [Google Scholar] [CrossRef]
- Apsley, D.; Leschziner, M. Advanced Turbulence Modelling of Separated Flow in a Diffuser. Flow Turbul. Combust. 2000, 631, 81–112. [Google Scholar] [CrossRef]
- Wallin, S.; Johansson, A.V. An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows. J. Fluid Mech. 2000, 403, 89–132. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries, Inc.: La Canada, CA, USA, 1998. [Google Scholar]
- Durbin, P.A.; Shih, T.I.-P. An Overview of Turbulence Modeling. In Modelling and Simulation of Turbulent Heat Transfer; Sundén, B., Faghri, M., Eds.; WIT Press: Southhampton, UK, 2005; Chapter 1; pp. 3–31. [Google Scholar]
- Raiesi, H.; Piomelli, U.; Pollard, A. Evaluation of Turbulence Models Using Direct Numerical and Large-Eddy Simulation Data. ASME J. Fluids Eng. 2011, 133, 021203. [Google Scholar] [CrossRef]
- Parneix, S.; Laurence, D.; Durbin, P.A. A Procedure for Using DNS Databases. ASME J. Fluids Eng. 1998, 120, 40–47. [Google Scholar] [CrossRef]
- Zhang, W.; Shih, T.I.-P. Adaptive Downstream Tensorial Eddy Viscosity for Hybrid LES-RANS Simulations. Int. J. Numer. Methods Fluids 2021, 93, 1825–1842. [Google Scholar] [CrossRef]
- Zhang, W.; Shih, T.I.-P. Hybrid LES Method with Adaptive Downstream Anisotropic Eddy Viscosity Model. Int. J. Numer. Methods Fluids 2022, 94, 1764–1783. [Google Scholar] [CrossRef]
- Wang, T.S.; Chyu, M.K. Heat Convection in a 180-Deg Turning Duct with Different Turn Configurations. J. Thermophys. Heat Transf. 1994, 8, 595–601. [Google Scholar] [CrossRef]
- Stephens, M.A.; Shih, T.I.-P. Computations of Flow and Heat Transfer in a Smooth U-Shaped Square Duct with and without Rotation. AIAA J. Propuls. Power 1999, 15, 272–279. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Shih, T.I.-P.; Stephens, M.A.; Chyu, M.K. A Numerical Study of Flow and Heat Transfer in a Smooth and Ribbed U-Duct with and Without Rotation. ASME J. Heat Transf. 2001, 123, 219–232. [Google Scholar] [CrossRef]
- Shih, T.I.-P.; Sultanian, B. Computations of Internal and Film Cooling. In Heat Transfer in Gas Turbines; Sundén, B., Faghri, M., Eds.; WIT Press: Southhampton, UK, 2001; Chapter 5; pp. 175–225. [Google Scholar]
- Ooi, A.; Iaccarino, G.; Durbin, P.; Behnia, M. Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts. Int. J. Heat Fluid Flow 2002, 23, 750–757. [Google Scholar] [CrossRef]
- Su, G.; Chen, H.C.; Han, J.C.; Heidmann, J.D. Computation of Flow and Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 1:1, AR = 1:2, AR = 1:4) with 45-Deg Angled Ribs by a Reynolds Stress Turbulence Model. In Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 14–17 June 2004; ASME Paper, No. GT2004-53662. Volume 3, pp. 603–612. [Google Scholar]
- Shevchuk, I.V.; Jenkins, S.C.; Von Wolfersdorf, J.; Weigand, B.; Neumann, S.O.; Schnieder, M. Validation and Analysis of Numerical Results for a Varying Aspect Ratio Two-Pass Internal Cooling Channel. ASME J. Heat Transf. 2011, 133, 051701. [Google Scholar] [CrossRef]
- Smith, M.A.; Mathison, R.M.; Dunn, M.G. Heat Transfer for High Aspect Ratio Rectangular Channels in a Stationary Serpentine Passage with Turbulated and Smooth Surfaces. ASME J. Turbomach. 2013, 136, 051002. [Google Scholar] [CrossRef]
- Hu, S.-Y.; Chi, X.; Shih, T.I.-P.; Bryden, K.M.; Chyu, M.K.; Ames, R.; Dennis, R.A. Flow and Heat Transfer in the Tip-Turn Region of a U-Duct under Rotating and Non-Rotating Conditions. ASME Paper GT-2011-46013. In Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011. [Google Scholar]
- Saha, K.; Acharya, S. Bend Geometries in Internal Cooling Channels for Improved Thermal Performance. ASME J. Turbomach. 2013, 135, 031028. [Google Scholar] [CrossRef]
- Li, H.; You, R.; Deng, H.; Tao, Z.; Zhu, J. Heat Transfer Investigation in a Rotating U-Turn Smooth Channel with Irregular Cross-Section. Int. J. Heat Mass Transf. 2016, 96, 267–277. [Google Scholar] [CrossRef]
- Hu, K.S.-Y.; Chi, X.; Shih, T.I.-P.; Chyu, M.; Crawford, M. Steady RANS of Flow and Heat Transfer in a Smooth and Pin-Finned U-Duct with a Trapezoidal Cross Section. ASME J. Eng. Gas Turbines Power 2019, 141, 061009. [Google Scholar] [CrossRef]
- Lee, C.-S.; Shih, T.I.-P. Effects of Heat Loads on Flow and Heat Transfer in the Entrance Region of a Cooling Duct with a Staggered Array of Pin Fins. Int. J. Heat Mass Transf. 2021, 175, 121302. [Google Scholar] [CrossRef]
- Metais, O.; Salinas-Vasquez, M. Large-eddy Simulation of Turbulent Flow Through a Heated Square Duct. J. Fluid Mech. 2002, 453, 201–238. [Google Scholar]
- Hebrard, J.; Metais, O.; Salinas-Vasquez, M. Large-eddy Simulation of Turbulent Duct Flow: Heating and Curvature Effects. Int. J. Heat Fluid Flow 2004, 25, 569–580. [Google Scholar] [CrossRef]
- Munch, C. Large Eddy Simulation of the Turbulent Flow in Heated Curved Ducts: Influence of the Reynolds Number. In Proceedings of the Fourth International Symposium on Turbulence and Shear Flow Phenomena, Williamburg, VA, USA, 27–29 June 2005. [Google Scholar]
- Guleren, K.M.; Turan, A. Validation of Large-Eddy Simulation of Strongly Curved Stationary and Rotating U-Duct Flows. Int. J. Heat Fluid Flow 2007, 28, 909–921. [Google Scholar] [CrossRef]
- Acharya, S.; Tyagi, M. Large Eddy Simulations of Flow and Heat Transfer in Rotating Ribbed Duct Flows. ASME J. Heat Transf. 2005, 127, 486–498. [Google Scholar]
- Laskowski, G.M.; Durbin, P.A. Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage. Phys. Fluids 2007, 19, 015101. [Google Scholar] [CrossRef]
- Hu, K.S.; Shih, T.I.-P. Large-Eddy and RANS Simulations of Heat Transfer in a U-Duct with a High-Aspect Ratio Trapezoidal Cross Section. ASME GT2018-75535. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Shih, T.-H.; Liou, W.; Shabbir, A.; Zhu, J. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows. AIAA Paper 93-2906. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, And Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Menter, F.R.; Rumsey, C.L. Assessment of Two- Equation Turbulence Models for Transonic Flows. AIAA Paper 94-2343. In Proceedings of the Fluid Dynamics Conference, Colorado Springs, CO, USA, 20–23 June 1994. [Google Scholar]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. In Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey, 12–17 October 2003; pp. 625–632. [Google Scholar]
- Chen, H.C.; Patel, V.C. Near-Wall Turbulence Models for Com- plex Flows including Separation. AlAA J. 1988, 26, 641–648. [Google Scholar]
- Chen, C.J.; Jaw, S.-Y. Fundamentals of Turbulence Modelling; Taylor & Francis: Washington, DC, USA, 1998. [Google Scholar]
- Nicoud, F.; Ducros, F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 1999, 62, 183–200. [Google Scholar] [CrossRef]
- ANSYS Fluent Manuals. Available online: http://www.fluent.com/software/fluent/index.htm (accessed on 13 April 2024).
- Patankar, S. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar]
- Lampitella, P. Large Eddy Simulation for Complex Industrial Flows. PhD Thesis, Dipartimento di Energia, Milan, Italy, 2014. [Google Scholar]
- Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Indux of Resolution Quality for Large Eddy Simulations. ASME J. Fluids Eng. 2005, 127, 949–958. [Google Scholar] [CrossRef]
- Launder, B.E.; Reece, G.J.; Rodi, W. Progress in the Development of a Reynolds-Stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [Google Scholar] [CrossRef]
- Mansour, N.N.; Kim, J.; Moin, P. Reynolds-stress and dissipation rate budgets in a turbulent channel flow. J. Fluid Mech. 1988, 194, 15–44. [Google Scholar] [CrossRef]
- Huser, A.; Biringen, S. Direct Numerical Simulation of Turbulent Flow in a Square Duct. J. Fluid Mech. 1993, 257, 65–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.S.; Shih, T.I.-P. Large-Eddy vs. Reynolds-Averaged Navier–Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation. Energies 2024, 17, 2414. https://doi.org/10.3390/en17102414
Hu KS, Shih TI-P. Large-Eddy vs. Reynolds-Averaged Navier–Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation. Energies. 2024; 17(10):2414. https://doi.org/10.3390/en17102414
Chicago/Turabian StyleHu, Kenny S., and Tom I-P. Shih. 2024. "Large-Eddy vs. Reynolds-Averaged Navier–Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation" Energies 17, no. 10: 2414. https://doi.org/10.3390/en17102414
APA StyleHu, K. S., & Shih, T. I. -P. (2024). Large-Eddy vs. Reynolds-Averaged Navier–Stokes Simulations of Flow and Heat Transfer in a U-Duct with Unsteady Flow Separation. Energies, 17(10), 2414. https://doi.org/10.3390/en17102414