Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study
Abstract
:1. Introduction
1.1. Deep Decarbonization Using Carbon-Neutral Fuels
1.2. Looking beyond Fuel: A Near-Term Solution
1.3. Outline
2. Methodology
2.1. Case Ship and Route Specifications
2.2. System Configuration
2.3. Mathematical Models
2.3.1. Fuel Consumption Calculations
2.3.2. GHG Calculations
2.3.3. EEDI and CII Calculations
2.3.4. Economic Calculations
2.4. Model Assumptions and Key Inputs
3. Results and Discussion
3.1. Fuel Consumption Analysis
3.2. Emissions Reduction Potential of Deep-Sea Decarbonization
3.3. Cost Parity with HFOs
Parameter | CAPEX ($/kW) | Auxiliaries ($/kW) | Installation ($/kW) | Fuel Tank ($/kW) | Lifetime (Years) | O&M (% CAPEX) | REPLEX (% CAPEX) |
---|---|---|---|---|---|---|---|
Combustion Engine | 311 a | 4.9 a | 3.1 a | 0.1 a | 25 a | 0.43 a | N/A |
DF combustion engine | 393 a | 4.9 a | 3.9 a | 0.3 a | 25 a | 0.43 a | N/A |
Auxiliary Engine | 278.5 a | 4.9 a | 2.8 a | 0.1 a | 25 a | 0.43 a | N/A |
Battery | 190.5 ($/kWh) b,c | 72.4 ($/kWh) b,c | 18.8 ($/kWh) b,c | N/A | 10 b,c | 2.5 b,c | 100 b,c |
PEMFC | 1029.2 d | 7.9 d | 232.6 d | 477 $/kg e | 10 d | 5.5 d | 4.83 d |
Flettner Rotors | 2770 a | Included in CAPEX | Included in CAPEX | N/A | 25 a | 1.5 a | N/A |
CCS | 4.83 M$ f | Included in CAPEX | Included in CAPEX | Included in CAPEX | 15 f | 5 f | Included in CAPEX |
Air Lubrication | 3461 a | Included in CAPEX | Included in CAPEX | N/A | 15 a | 3.5 a | Included in CAPEX |
H2-SOFC | 10,000 g | Included in CAPEX | 2300 g | 477 $/kg e | 10 g | 5.5 g | 42.87 h |
NH3 SOFC | 10,000 g | Included in CAPEX | 2300 g | 2330 $/m3 | 10 g | 5.5 g | 42.87 h |
3.4. Sensitivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BD-10 | 10% Biofuel and Diesel blend |
CCS | Carbon Capture and Storage |
CII | Carbon Intensity Indicator |
CO2 | Carbon dioxide |
CAPEX | Capital Expenditure |
DF | Dual Fuel |
DF-AIR | Dual Fuel and Air Lubrication |
DF-BT | Dual Fuel Battery |
DF-CCS | Dual Fuel and CCS |
DF-FC | Dual Fuel and Fuel Cell |
DF-RT | Dual Fuel and Rotor |
DPP | Discounted Payback Period |
EEDI | Energy Efficiency Design Index |
GHG | Green House Gas |
GWP | Global Warming Potential |
HFO | Heavy Fuel Oil |
ICE | Internal Combustion Engine |
IMO | International Maritime Organization |
LCOE | Levelized Cost of Electricity |
LCV | Lower Calorific Value |
LHV | Lower Heating Value |
LNG | Liquefied Natural Gas |
NOx | Nitrogen oxides |
PM | Particulate Matter |
OPEX | Operational Expenditure |
O&M | Maintenance cost |
SFOC | Specific Fuel Oil Consumption |
SOx | Sulphur oxides |
VLSFO | Very Low Sulphur Fuel Oil |
VLSFO-CCS | Very Low Sulphur Fuel Oil and CCS |
VLSFO-H2SOFC | Very Low Sulphur Fuel Oil and Hydrogen Solid Oxide Fuel Cell |
VLSFO-NH3SOFC | Very Low Sulphur Fuel Oil and Ammonia Solid Oxide Fuel Cell |
VLSFO-RT | Very Low Sulphur Fuel Oil and Rotor |
WASP | Wind Assisted Ship Propulsion |
WTW | Well to Wake |
Symbols | |
Fuel cell efficiency | |
Cinv | Investment cost, $ |
Cinv, a | Annual investment cost, $ |
Crep | Replacement cost, $ |
Crep, a | Annualized replacement cost, $ |
CO&M, a | Annualized operation and maintenance cost, $ |
CO&M, Engines | Annualized engine operation and maintenance cost, $ |
CO&M, Fuel cost | Annualized fuel cost, $ |
CO&M, decarbonization | Annualized decarbonization technology operation and maintenance cost, $ |
CCarbon tax, a | Annualized carbon tax, $ |
Cap | Capital cost, $ |
CIIbaseline/DF | Baseline or dual fuel carbon intensity metric, g/t*nm |
dt | Voyage time, hours |
EEDIbaseline/DF | Baseline or dual fuel energy efficiency design index, g/t*nm |
FEEDI | Energy efficiency design index factor |
F | GHG factor |
FAECO2e20 | Auxiliary engine GHG factor 20 years |
FAECO2e100 | Auxiliary engine GHG factor 100 years |
FMECO2e20 | Main engine GHG factor 20 years |
FMECO2e100 | Main engine GHG factor 100 years |
GHGCO2e20 | GHG emissions 20 years |
GHGCO2e20 | GHG emissions 100 years |
i | Annual interest rate |
M(fuel) | Annual fuel consumption, kg |
M(fuel)AE | Annual fuel consumption auxiliary engine, kg |
M(fuel)ME | Annual fuel consumption auxiliary engine, kg |
M(fuel)PEMFC,SOFC | Annual fuel consumption for fuel cells, kg |
NAIj | Net annual income (j is the year in the system lifetime), $ |
PAE | Auxiliary engine power requirement, W |
Pbaseline | Baseline power requirement, W |
PME | Main engine power requirement, W |
Specific price of electricity, $/kWh | |
PEj | Annual electricity production, kWh |
Rtj | Annual revenue, $ |
SFOCAE | Auxiliary engine specific fuel oil consumption, g/kWh |
SFOCME | Main engine specific fuel oil consumption, g/kWh |
t | Year of replacement |
We | Annual electricity production |
z | Product lifetime, year |
References
- Balcombe, P.; Brierley, J.; Lewis, C.; Skatvedt, L.; Speirs, J.; Hawkes, A.; Staffell, I. How to decarbonise international shipping: Options for fuels, technologies and policies. Energy Convers. Manag. 2019, 182, 72–88. [Google Scholar] [CrossRef]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; van der Loeff, W.S.; Smith, T.; Zhang, Y.; Kosaka, H. Reduction of GHG emissions from ships—Fourth IMO GHG study 2020—Final report. IMO MEPC 2020, 75, 15. [Google Scholar]
- IMO. Adoption of the Initial IMO Strategy on Reduction of GHG Emissions from Ships and Existing IMO Activity Related to Reducing GHG Emissions in the Shipping Sector. 2018. Available online: https://unfccc.int/sites/default/files/resource/250_IMO%20submission_Talanoa%20Dialogue_April%202018.pdf (accessed on 11 July 2022).
- Goulielmos, A.M. The Initial 40 Years of the EC Maritime Policy, Part I: 1957–1997: Is EU-27 Maritime Industry “Fit for 55”? Mod. Econ. 2022, 13, 159–185. [Google Scholar] [CrossRef]
- Ampah, J.D.; Liu, X.; Sun, X.; Pan, X.; Xu, L.; Jin, C.; Sun, T.; Geng, Z.; Afrane, S.; Liu, H. Study on characteristics of marine heavy fuel oil and low carbon alcohol blended fuels at different temperatures. Fuel 2022, 310, 122307. [Google Scholar] [CrossRef]
- Jin, C.; Sun, T.; Ampah, J.D.; Liu, X.; Geng, Z.; Afrane, S.; Yusuf, A.A.; Liu, H. Comparative study on synthetic and biological surfactants’ role in phase behavior and fuel properties of marine heavy fuel oil-low carbon alcohol blends under different temperatures. Renew. Energy 2022, 195, 841–852. [Google Scholar] [CrossRef]
- Andersson, C.; Bergström, R.; Johansson, C. Population exposure and mortality due to regional background PM in Europe–Long-term simulations of source region and shipping contributions. Atmos. Environ. 2009, 43, 3614–3620. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Bouman, E.A.; Lindstad, E.; Rialland, A.I.; Strømman, A.H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—A review. Transp. Res. Part D Transp. Environ. 2017, 52, 408–421. [Google Scholar] [CrossRef]
- Bernatik, A.; Senovsky, P.; Pitt, M. LNG as a potential alternative fuel–safety and security of storage facilities. J. Loss Prev. Process Ind. 2011, 24, 19–24. [Google Scholar] [CrossRef]
- Burel, F.; Taccani, R.; Zuliani, N. Improving sustainability of maritime transport through utilization of Liquefied Natural Gas (LNG) for propulsion. Energy 2013, 57, 412–420. [Google Scholar] [CrossRef]
- Elgohary, M.M.; Seddiek, I.S.; Salem, A.M. Overview of alternative fuels with emphasis on the potential of liquefied natural gas as future marine fuel. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2015, 229, 365–375. [Google Scholar] [CrossRef]
- LNGPRIME. DNV Reports New Monthly Record for LNG-Fueled Ship Orders. Available online: https://lngprime.com/europe/dnv-reports-new-monthly-record-for-lng-fueled-ship-orders/50299/ (accessed on 11 June 2022).
- Yoo, B.-Y. Economic assessment of liquefied natural gas (LNG) as a marine fuel for CO2 carriers compared to marine gas oil (MGO). Energy 2017, 121, 772–780. [Google Scholar] [CrossRef]
- Balcombe, P.; Staffell, I.; Kerdan, I.G.; Speirs, J.F.; Brandon, N.P.; Hawkes, A.D. How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis. Energy 2021, 227, 120462. [Google Scholar] [CrossRef]
- Hwang, S.; Jeong, B.; Jung, K.; Kim, M.; Zhou, P. Life cycle assessment of LNG fueled vessel in domestic services. J. Mar. Sci. Eng. 2019, 7, 359. [Google Scholar] [CrossRef]
- Mukherjee, A.; Bruijnincx, P.; Junginger, M. A perspective on biofuels use and CCS for GHG mitigation in the marine sector. Iscience 2020, 23, 101758. [Google Scholar] [CrossRef] [PubMed]
- Stathatou, P.M.; Bergeron, S.; Fee, C.; Jeffrey, P.; Triantafyllou, M.; Gershenfeld, N. Towards decarbonization of shipping: Direct emissions & life cycle impacts from a biofuel trial aboard an ocean-going dry bulk vessel. Sustain. Energy Fuels 2022, 6, 1687–1697. [Google Scholar]
- Ammar, N.R. An environmental and economic analysis of methanol fuel for a cellular container ship. Transp. Res. Part D Transp. Environ. 2019, 69, 66–76. [Google Scholar] [CrossRef]
- Radonja, R.; Bebić, D.; Glujić, D. Methanol and ethanol as alternative fuels for shipping. Promet-Traffic Transp. 2019, 31, 321–327. [Google Scholar] [CrossRef]
- Liu, M.; Li, C.; Koh, E.K.; Ang, Z.; Lam, J.S.L. Is methanol a future marine fuel for shipping? J. Phys. Conf. Ser. 2019, 1357, 012014. [Google Scholar] [CrossRef]
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landälv, I.J.R.; Reviews, S.E. Renewable methanol as a fuel for the shipping industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- GOV.UK. Agriculture in the UK Evidence Pack. 2022. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1106562/AUK_Evidence_Pack_2021_Sept22.pdf (accessed on 11 July 2022).
- Bicer, Y.; Dincer, I. Clean fuel options with hydrogen for sea transportation: A life cycle approach. Int. J. Hydrog. Energy 2018, 43, 1179–1193. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Liu, L. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. Int. J. Hydrog. Energy 2021, 46, 14805–14812. [Google Scholar] [CrossRef]
- Lhuillier, C.; Brequigny, P.; Contino, F.; Mounaïm-Rousselle, C. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel 2020, 269, 117448. [Google Scholar] [CrossRef]
- Frigo, S.; Gentili, R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. Int. J. Hydrog. Energy 2013, 38, 1607–1615. [Google Scholar] [CrossRef]
- Al-Aboosi, F.Y.; El-Halwagi, M.M.; Moore, M.; Nielsen, R.B. Renewable ammonia as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100670. [Google Scholar] [CrossRef]
- EMSA. Potential of Ammonia as Fuel in Shipping. Available online: https://www.emsa.europa.eu/newsroom/latest-news/item/4833-potential-of-ammonia-as-fuel-in-shipping.html (accessed on 14 November 2023).
- Environment, T. Road Map to Decarbonising European Shipping. Available online: https://www.transportenvironment.org/discover/roadmap-decarbonising-european-shipping/ (accessed on 14 November 2023).
- Gholami, A.; Jazayeri, S.A.; Esmaili, Q. A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines. Process Saf. Environ. Prot. 2022, 163, 621–635. [Google Scholar] [CrossRef]
- Madsen, R.; Klebanoff, L.; Caughlan, S.; Pratt, J.; Leach, T.; Appelgate, T., Jr.; Kelety, S.; Wintervoll, H.-C.; Haugom, G.; Teo, A. Feasibility of the Zero-V: A zero-emissions hydrogen fuel-cell coastal research vessel. Int. J. Hydrog. Energy 2020, 45, 25328–25343. [Google Scholar] [CrossRef]
- Ghenai, C.; Bettayeb, M.; Brdjanin, B.; Hamid, A.K. Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Stud. Therm. Eng. 2019, 14, 100497. [Google Scholar] [CrossRef]
- Han, J.; Charpentier, J.-F.; Tang, T. An energy management system of a fuel cell/battery hybrid boat. Energies 2014, 7, 2799–2820. [Google Scholar] [CrossRef]
- Wu, S.; Miao, B.; Chan, S.H. Feasibility assessment of a container ship applying ammonia cracker-integrated solid oxide fuel cell technology. Int. J. Hydrog. Energy 2022, 47, 27166–27176. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef]
- Zincir, B. Environmental and economic evaluation of ammonia as a fuel for short-sea shipping: A case study. Int. J. Hydrog. Energy 2022, 47, 18148–18168. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrog. Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
- del Pozo, C.A.; Cloete, S. Techno-economic assessment of blue and green ammonia as energy carriers in a low-carbon future. Energy Convers. Manag. 2022, 255, 115312. [Google Scholar] [CrossRef]
- Veldhuis, I.; Richardson, R.; Stone, H. Hydrogen fuel in a marine environment. Int. J. Hydrog. Energy 2007, 32, 2553–2566. [Google Scholar] [CrossRef]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Seddiek, I.S.; Ammar, N.R. Harnessing wind energy on merchant ships: Case study Flettner rotors onboard bulk carriers. Environ. Sci. Pollut. Res. 2021, 28, 32695–32707. [Google Scholar] [CrossRef]
- Lu, R.; Ringsberg, J.W. Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology. Ships Offshore Struct. 2020, 15, 249–258. [Google Scholar] [CrossRef]
- Traut, M.; Gilbert, P.; Walsh, C.; Bows, A.; Filippone, A.; Stansby, P.; Wood, R. Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes. Appl. Energy 2014, 113, 362–372. [Google Scholar] [CrossRef]
- Zhang, P.; Lozano, J.; Wang, Y. Using Flettner Rotors and Parafoil as alternative propulsion systems for bulk carriers. J. Clean. Prod. 2021, 317, 128418. [Google Scholar] [CrossRef]
- Tillig, F.; Mao, W.; Ringsberg, J. Systems Modelling for Energy-Efficient Shipping; Chalmers University of Technology: Gothenburg, Sweden, 2015. [Google Scholar]
- Wang, H.; Lutsey, N. Long-term potential for increased shipping efficiency through the adoption of industry-leading practices. Int. Counc. Clean Transp. 2013, 65. Available online: https://d1wqtxts1xzle7.cloudfront.net/89020428/ICCT_ShipEfficiency_20130723-libre.pdf?1658862635=&response-content-disposition=inline%3B+filename%3DLong_term_potential_for_increased_shippi.pdf&Expires=1700154448&Signature=FZJZMhkrmuiRpQmJdQ8qwHWkBZOVEzdah7VVS2izS2B1RxgvGhCiGrbrbNtcxUczoqhfDneXQUI1wFexlhrJOwKyONysrSbfduSOTlgytrPs~PjUXKxmnX7E8fW~~KjIg49uUvZogddyKP97m3YXpvoIxN6JIju5B2eOL7D67Y6P7wI~3WHdg12d0HeSGwjE5cw5~2YjcSB2WZ7Oc4b8myehmVzTDkwT5WAAACogztsveTdTHwUZ07fu-jDWGXb3Ris2nj6GSFtgUiMfS5nZAGZ3hoN524yustzygeckskHkWBkDQz3ZjUIZEbgHDlHcJT1ertjr1N8w~WOpqFk~VA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 14 November 2023).
- Miola, A.; Marra, M.; Ciuffo, B. Designing a climate change policy for the international maritime transport sector: Market-based measures and technological options for global and regional policy actions. Energy Policy 2011, 39, 5490–5498. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, W.; Wan, D. Multi-fidelity Co-Kriging surrogate model for ship hull form optimization. Ocean Eng. 2022, 243, 110239. [Google Scholar] [CrossRef]
- Andersson, J.; Oliveira, D.R.; Yeginbayeva, I.; Leer-Andersen, M.; Bensow, R.E. Review and comparison of methods to model ship hull roughness. Appl. Ocean Res. 2020, 99, 102119. [Google Scholar] [CrossRef]
- Silberschmidt, N.; Tasker, D.; Pappas, T.; Johannesson, J. Silverstream system-air lubrication performance verification and design development. In Proceedings of the Conference of Shipping in Changing Climate, Newcastle, UK, 10–11 November 2016; pp. 10–11. [Google Scholar]
- GOV.UK. Energy Trends and Prices Statistical Release: 24 February 2022. 2022. Available online: https://www.gov.uk/government/statistics/energy-trends-and-prices-statistical-release-24-february-2022 (accessed on 14 November 2023).
- Wang, H.; Boulougouris, E.; Theotokatos, G.; Zhou, P.; Priftis, A.; Shi, G. Life cycle analysis and cost assessment of a battery powered ferry. Ocean Eng. 2021, 241, 110029. [Google Scholar] [CrossRef]
- Kersey, J.; Popovich, N.D.; Phadke, A.A. Rapid battery cost declines accelerate the prospects of all-electric interregional container shipping. Nat. Energy 2022, 7, 664–674. [Google Scholar] [CrossRef]
- Minnehan, J.J.; Pratt, J.W. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels; Sandia National Laboratories (SNL-NM): Albuquerque, NM, USA, 2017. [Google Scholar]
- Luo, X.; Wang, M. Study of solvent-based carbon capture for cargo ships through process modelling and simulation. Appl. Energy 2017, 195, 402–413. [Google Scholar] [CrossRef]
- Feenstra, M.; Monteiro, J.; van den Akker, J.T.; Abu-Zahra, M.R.; Gilling, E.; Goetheer, E. Ship-based carbon capture onboard of diesel or LNG-fuelled ships. Int. J. Greenh. Gas Control 2019, 85, 1–10. [Google Scholar] [CrossRef]
- Ros, J.A.; Skylogianni, E.; Doedée, V.; van den Akker, J.T.; Vredeveldt, A.W.; Linders, M.J.; Goetheer, E.L.; Monteiro, J.G.M. Advancements in ship-based carbon capture technology on board of LNG-fuelled ships. Int. J. Greenh. Gas Control 2022, 114, 103575. [Google Scholar] [CrossRef]
- Wartsila. Wärtsilä Advances Carbon Capture and Storage in Maritime as Part of LINCCS Consortium. Available online: https://www.wartsila.com/media/news/08-09-2021-wartsila-advances-carbon-capture-and-storage-in-maritime-as-part-of-linccs-consortium-2972116 (accessed on 1 June 2022).
- Freightify. Top 5 Busiest Global Major Shipping Routes 2022. Available online: https://www.freightify.com/blog/busiest-global-trade-shipping-routes-2021 (accessed on 11 June 2022).
- Ports. Sea Routes and Distances. Available online: http://ports.com/sea-route (accessed on 11 June 2022).
- Maritime, A. Aframax Tanker Drawings and Engine Data; Alpha Marine Consulting: Pireas, Greece, 2022. [Google Scholar]
- Zis, T.P.; Psaraftis, H.N.; Tillig, F.; Ringsberg, J.W. Decarbonizing maritime transport: A Ro-Pax case study. Res. Transp. Bus. Manag. 2020, 37, 100565. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Qian, Y.; Deng, K. Experimental energy and exergy analysis of turbocharged marine low-speed engine with high pressure exhaust gas recirculation. Fuel 2022, 323, 124360. [Google Scholar] [CrossRef]
- Ahmad, F.; Khalid, M.; Panigrahi, B.K. Development in energy storage system for electric transportation: A comprehensive review. J. Energy Storage 2021, 43, 103153. [Google Scholar] [CrossRef]
- Balsamo, F.; Capasso, C.; Lauria, D.; Veneri, O. Optimal design and energy management of hybrid storage systems for marine propulsion applications. Appl. Energy 2020, 278, 115629. [Google Scholar] [CrossRef]
- Deloitte China. Fueling the Future of Mobility. Hydrog. Fuel Cell Solut. Transp. 2020, 1. Available online: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/energy-resources/deloitte-uk-energy-resources-investing-in-hydrogen.pdf (accessed on 11 June 2022).
- Norsepower. Norsepower|Rotor Sails|Wind Propulsion. Available online: https://www.norsepower.com/ (accessed on 11 June 2022).
- Ma, H.; Steernberg, K.; Riera-Palou, X.; Tait, N. Well-to-wake energy and greenhouse gas analysis of SOX abatement options for the marine industry. Transp. Res. Part D Transp. Environ. 2012, 17, 301–308. [Google Scholar] [CrossRef]
- Comer, B.; Osipova, L. Accounting for Well-to-Wake Carbon Dioxide Equivalent Emissions in Maritime Transportation Climate Policies; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2021. [Google Scholar]
- Attah, E.E.; Bucknall, R. An analysis of the energy efficiency of LNG ships powering options using the EEDI. Ocean Eng. 2015, 110, 62–74. [Google Scholar] [CrossRef]
- Wang, S.; Psaraftis, H.N.; Qi, J. Paradox of international maritime organization’s carbon intensity indicator. Commun. Transp. Res. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Hon, G.; Wang, H. The Energy Efficiency Design Index (EEDI) for New Ships; The International Council on Clean Transportation (ICCT): Washington, DC, USA, 2011. [Google Scholar]
- Minutillo, M.; Perna, A.; Di Trolio, P.; Di Micco, S.; Jannelli, E. Techno-economics of novel refueling stations based on ammonia-to-hydrogen route and SOFC technology. Int. J. Hydrogen Energy 2021, 46, 10059–10071. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, K. Optimization on hybrid energy vessel routing and energy management for floating marine debris cleanup. Transp. Res. Part C Emerg. Technol. 2022, 138, 103649. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, N.; Li, M.; Xu, Z.; Wu, D.; Hillmansen, S.; Tsolakis, A.; Blacktop, K.; Roberts, C. A techno-economic analysis of ammonia-fuelled powertrain systems for rail freight. Transp. Res. Part D Transp. Environ. 2023, 119, 103739. [Google Scholar] [CrossRef]
- Ship&Bunker. World Bunker Prices. Available online: https://shipandbunker.com/prices (accessed on 11 June 2022).
- Metzger, D. Market-based measures and their impact on green shipping technologies. WMU J. Marit. Aff. 2022, 21, 3–23. [Google Scholar] [CrossRef]
- Neste. Available online: https://www.neste.com/investors/market-data (accessed on 11 June 2022).
- Chu, K.H.; Lim, J.; Mang, J.S.; Hwang, M.-H. Evaluation of strategic directions for supply and demand of green hydrogen in South Korea. Int. J. Hydrog. Energy 2021, 47, 1409–1424. [Google Scholar] [CrossRef]
- Global, S.P. Interactive: Platts Ammonia Price Chart. Available online: https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/051023-interactive-ammonia-price-chart-natural-gas-feedstock-europe-usgc-black-sea (accessed on 11 July 2023).
- White, J. Japan’s carbon tax proposal for shipping marks a global shift. Int. Tax Rev. 2022. Available online: https://www.proquest.com/scholarly-journals/japan-s-carbon-tax-proposal-shipping-marks-global/docview/2675440381/se-2?accountid=8630 (accessed on 11 June 2022).
- Puertodemelilla. Régimen de Las Tarifas Portuarias Por Prestación de Servicios Comerciales en Puerto de Melilla. Available online: www.puertodemelilla.es (accessed on 11 June 2022).
- AFDC. Alternative Fuel Price Report. 2022. Available online: https://afdc.energy.gov/ (accessed on 11 July 2022).
- Brynolf, S.; Fridell, E.; Andersson, K. Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. J. Clean. Prod. 2014, 74, 86–95. [Google Scholar] [CrossRef]
- Jeong, B.; Jang, H.; Lee, W.; Park, C.; Ha, S.; Cho, N.-K. Is electric battery propulsion for ships truly the lifecycle energy solution for marine environmental protection as a whole? J. Clean. Prod. 2022, 355, 131756. [Google Scholar] [CrossRef]
- Lindstad, E.; Bø, T.I. Potential power setups, fuels and hull designs capable of satisfying future EEDI requirements. Transp. Res. Part D Transp. Environ. 2018, 63, 276–290. [Google Scholar] [CrossRef]
- Perčić, M.; Vladimir, N.; Fan, A. Life-cycle cost assessment of alternative marine fuels to reduce the carbon footprint in short-sea shipping: A case study of Croatia. Appl. Energy 2020, 279, 115848. [Google Scholar] [CrossRef]
- NREL. Utility-Scale Battery Storage|Electricity|2021|ATB|NREL. Available online: https://atb.nrel.gov/electricity/2021/utility-scale_battery_storage (accessed on 11 June 2022).
- Delloite. Fueling the Future of Mobility Hydrogen and Fuel Cell Solutions for Transportation (Ballard). 2021. Available online: https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/finance/deloitte-cn-fueling-the-future-of-mobility-en-200101.pdf (accessed on 11 July 2022).
- Ahluwalia, R.; Roh, H.-S.; Peng, J.-K.; Papadias, D.; Baird, A.; Hecht, E.; Ehrhart, B.; Muna, A.; Ronevich, J.; Houchins, C. Liquid hydrogen storage system for heavy duty trucks: Configuration, performance, cost, and safety. Int. J. Hydrog. Energy 2023, 48, 13308–13323. [Google Scholar] [CrossRef]
- Ammermann, H.; Hoff, P.; Atanasiu, M.; Tisler, O.; Kaufmann, M. Advancing Europe’s Energy Systems-Stationary Fuel Cells in Distributed Generation. 2015. Available online: https://www.h2knowledgecentre.com/content/researchpaper1118 (accessed on 11 July 2023).
- Stott, P. A retrospective review of the average period of ship ownership with implications for the potential payback period for retrofitted equipment. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2014, 228, 249–261. [Google Scholar] [CrossRef]
- Adachi, M.; Kosaka, H.; Fukuda, T.; Ohashi, S.; Harumi, K. Economic analysis of trans-ocean LNG-fueled container ship. J. Mar. Sci. Technol. 2014, 19, 470–478. [Google Scholar] [CrossRef]
- Adi, T.W. Influence of fuel price, electricity price, fuel consumption on operating cost, generation and operating income: A case study on PLN. Int. J. Energy Sect. Manag. 2022, 17, 227–250. [Google Scholar] [CrossRef]
- Bhattacharyya, S.C. Fossil-fuel dependence and vulnerability of electricity generation: Case of selected European countries. Energy Policy 2009, 37, 2411–2420. [Google Scholar] [CrossRef]
- Grubb, M. Opinion: Renewables are Cheaper than Ever—So Why Are Household Energy Bills Only Going up? Available online: https://www.ucl.ac.uk/news/2022/jan/opinion-renewables-are-cheaper-ever-so-why-are-household-energy-bills-only-going (accessed on 11 July 2022).
Scenario | Acronym | Fuel | Prime Mover | Auxiliary Power | Alternative Energy Technology | Decarbonization Technology Lifetime (Years) |
---|---|---|---|---|---|---|
Baseline | VLSFO | VLSFO | ICE | 3 engine gensets | N/A | N/A |
Scenario A | BD10 | 10% Bio-VLSFO | ICE | 3 engine gensets | N/A | N/A |
Scenario B | DF | LNG | DF ICE | 3 engine gensets | N/A | N/A |
Scenario C | DF-BT | LNG | DF ICE | 2 engine gensets + batteries | Battery | 10 years [68,69] |
Scenario D | DF-PEMFC | LNG, Hydrogen | DF ICE | 2 engine gensets + PEM fuel cell | PEM fuel cell | 10 years [70] |
Scenario E | VLSFO-RT | VLSFO | ICE + Flettner rotors | 3 engine gensets | WASP (Flettner rotor) | 25 years [65,71] |
Scenario F | DF-RT | LNG | DF ICE + Flettner rotors | 3 engine gensets | WASP (Flettner rotor) | 25 years [65,71] |
Scenario G | VLSFO-CCS | VLSFO | ICE | 3 engine gensets | CCS | 12.5 years [60,61] |
Scenario H | DF-CCS | LNG | DF ICE | 3 engine gensets | CCS | 12.5 years [60,61] |
Scenario I | DF-AIR | LNG | DF ICE | 3 engine gensets | air lubrication | 15 years [54] |
Scenario J | VLSFO-H2SOFC | VLSFO, Hydrogen | ICE | 2 engine gensets + solid oxide fuel cell | SOFC | 10 Years [68,69] |
Scenario K | VLSFO-NH3SOFC | VLSFO, Ammonia | ICE | 2 engine gensets + solid oxide fuel cell | SOFC | 10 Years [68,69] |
Technology | Fuel Type | CO2e20 Factor (g/g of Fuel) | CO2e100 Factor (g/g of Fuel) |
---|---|---|---|
Main ICE | VLSFO | 4.37 | 4.04 |
Main ICE | LNG | 5.08 | 4.06 |
Auxiliary gensets | VLSFO | 5.07 | 4.24 |
Auxiliary gensets | LNG | 8.02 | 5.26 |
SOFC | Ammonia | 0.17068 | 0.17098 |
SOFC | Hydrogen | 0 | 0 |
Parameter | Price ($/ton) | Reference | Storage Conditions | Density (k/m3) | LHV (MJ/kg) | |
---|---|---|---|---|---|---|
Temperature (K) | Pressure (bar) | |||||
VLSFO | 1125 | [80] | 298 | 1 | 875 | 42.7 |
LNG | 1600 | [80] | 111 | 1 | 450 | 49.7 |
Biofuel | 1165 | [81,82] | 298 | 1 | 790 | 41.58 |
Green hydrogen | 2720 | [83] | 20 | 1 | 71 | 120 |
Green ammonia | 771 | [84] | 240 | 1 | 609 | 18.8 |
Carbon tax | 57 | [85] | - | - | - | - |
Electricity | 0.27 ($/kWh) | [86] | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrukh, S.; Li, M.; Kouris, G.D.; Wu, D.; Dearn, K.; Yerasimou, Z.; Diamantis, P.; Andrianos, K. Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study. Energies 2023, 16, 7640. https://doi.org/10.3390/en16227640
Farrukh S, Li M, Kouris GD, Wu D, Dearn K, Yerasimou Z, Diamantis P, Andrianos K. Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study. Energies. 2023; 16(22):7640. https://doi.org/10.3390/en16227640
Chicago/Turabian StyleFarrukh, Salman, Mingqiang Li, Georgios D. Kouris, Dawei Wu, Karl Dearn, Zacharias Yerasimou, Pavlos Diamantis, and Kostas Andrianos. 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study" Energies 16, no. 22: 7640. https://doi.org/10.3390/en16227640
APA StyleFarrukh, S., Li, M., Kouris, G. D., Wu, D., Dearn, K., Yerasimou, Z., Diamantis, P., & Andrianos, K. (2023). Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study. Energies, 16(22), 7640. https://doi.org/10.3390/en16227640