The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maczyszyn, B. Turnkey agricultural biogas plants. In Small Agricultural Biogas Plants—Mini Handbook; AF Projects Sp. z o. o.: Warsaw, Poland, 2010. [Google Scholar]
- Lehtomäki, A. Biogas Production from Energy Crops and Crop Residues; Jyväskylä University Printing House: Jyväskylä, Finland, 2006. [Google Scholar]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef]
- Meneses-Quelal, O.; Velázquez-Martí, B. Pretreatment of animal manure biomass to improve biogas production: A review. Energies 2020, 13, 3573. [Google Scholar]
- Kaltschmitt, M.; Scholwin, F.; Gattermann, H.; Schattauer, A.; Weiland, P. Biogas—Production Utilisation; Institut für Energetik und Umwelt Gmbh, Leipzig: Leipzig, Germany, 2005. [Google Scholar]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Skibko, Z.; Romaniuk, W.; Borusiewicz, A.; Porwisiak, H. Use of pellets from agricultural biogas plants in fertilization of oxytrees in Podlasie, Poland. J. Water Land Dev. 2021, 51, 124–128. [Google Scholar] [CrossRef]
- Myers, G.M.; Andersen, D.S.; Martens, B.J.; Raman, D.R. Cost Assessment of Centralizing Swine Manure and Corn Stover Co-Digestion Systems. Energies 2023, 16, 4315. [Google Scholar] [CrossRef]
- Akyürek, Z. Potential of biogas energy from animal waste in the Mediterranean region of Turkey. J. Energy Syst. 2018, 2, 160–167. [Google Scholar] [CrossRef]
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Frigon, J.-C.; Mehta, P.; Guiot, S.R. Impact of mechanical, chemical and enzymatic pre-treatments on the methane yield from the anaerobic digestion of switchgrass. Biomass Bioenergy 2012, 36, 1–11. [Google Scholar] [CrossRef]
- Baldwin, S.; Anthony, L.; Wang, M. Development of a Calculator for the Techno-Economic Assessment of Anaerobic Digestion Systems; Final report submitted to BC Ministry of Agriculture and Land and BC Life Sciences; Chemical and Biological Engineering, University of British Columbia: Vancouver, BC, Canada, 2009. [Google Scholar]
- Campuzano, R.; González-Martínez, S. Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Manag. 2016, 54, 3–12. [Google Scholar] [CrossRef]
- FAO. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Iglesias, R.; Muñoz, R.; Polanco, M.; Diaz, I.; Susmozas, A.; Moreno, A.D.; Guirado, M.; Carreras, N.; Ballesteros, M. Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development. Energies 2021, 14, 2742. [Google Scholar] [CrossRef]
- Ogbuewu, I.P.; Odoemenam, V.U.; Obikaonu, H.O.; Opara, M.N.; Emenalom, O.O.; Uchegbu, M.C.; Okoli, I.C.; Esonu, B.O.; Iloeje, M.U. The growing importance of neem (Azadirachta indica A. Juss) in agriculture, industry, medicine and environment: A review. Res. J. Med. Plant 2011, 5, 230–245. [Google Scholar] [CrossRef]
- Velthof, G.L.; Lesschen, J.P.; Webb, J.; Pietrzak, S.; Miatkowski, Z.; Pinto, M.; Kros, J.; Oenema, O. The impact of the Nitrates Directive on nitrogen emissions from agriculture in the EU-27 during 2000–2008. Sci. Total Environ. 2014, 468–469, 1225–1233. [Google Scholar] [CrossRef]
- Van Dijk, K.C.; Lesschen, J.P.; Oenema, O. Phosphorus flows and balances of the European Union Member States. Sci. Total Environ. 2016, 542, 1078–1093. [Google Scholar] [CrossRef]
- Webb, J.; Sommer, S.G.; Kupper, T.; Groenestein, K.; Hutchings, N.J.; Eurich-Menden, B.; Rodhe, L.; Misselbrook, T.H.; Amon, B. Emissions of ammonia, nitrous oxide and methane during the management of solid manures. In Agroecology and Strategies for Climate Change; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 67–107. [Google Scholar]
- Tallou, A.; Haouas, A.; Jamali, M.Y.; Atif, K.; Amir, S.; Aziz, F. Review on cow manure as renewable energy. In Smart Village Technology: Concepts and Developments; Patnaik, S., Sen, S., Mahmoud, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 341–352. [Google Scholar]
- Nielsen, H.B.; Mladenovska, Z.; Westermann, P.; Ahring, B.K. Comparison of two-stage thermophilic (68 °C/55 °C) anaerobic digestion with one-stage thermophilic (55 °C) digestion of cattle manure. Biotechnol. Bioeng. 2004, 86, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Nasir, I.M.; Mohd Ghazi, T.I.; Omar, R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review. Eng. Life Sci. 2012, 12, 258–269. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Frison, A.; Raga, R.; Angelidaki, I. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 2016, 216, 545–552. [Google Scholar] [CrossRef]
- Issah, A.-A.; Kabera, T.; Kemausuor, F. Biogas optimization processes and effluent quality: A review. Biomass Bioenergy 2020, 133, 105449. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mukherjee, J. Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Urra Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomia 2019, 9, 542. [Google Scholar] [CrossRef]
- Alburquerque, J.; Fuente, C.; Ferrer-costa, A.; Carrasco, L.; Cegarra, D.M.; Bernal, P.M. Assessment of the fertilizer po-tential of digestates from farm and agroindus-trial residues. Biomass Bioenergy 2012, 40, 181–189. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Noor, R.S.; Faheem, M.; Farhan, M.; Ameen, M.; Shaikh, S.A. Development and performance evaluation of small size household portable biogas plant for domestic use. Biomass Convers. Biorefinery 2022, 12, 3107–3119. [Google Scholar]
- Ellacuriaga, M.; García-Cascallana, J.; Gómez, X. Biogas Production from Organic Wastes: Integrating Concepts of Circular Economy. Fuels 2021, 2, 144–167. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Szymańska, M. Poferment as a Fertilizer for Agriculture; Foundation for the Development of Polish Agriculture: Warsaw, Poland, 2015. [Google Scholar]
- Skibko, Z.; Derehajło, S.; Tymińska, M. Influence of agricultural biogas plants on the power grid parameters. In Ulučšenie Èkspluatacionnyh Pokazatelej Selʹskohozâjstvennoj Ènergetiki; Simbirskih, E.S., Romaniuk, W., Eds.; Kirow, FGBOU VO Vâtskij GATU, 2021; Volume 21, pp. 3–12. [Google Scholar]
- Derehajło, S.; Skibko, Z. Cooperation of Biogas Plants with the Power Grid—Selected Issues; ElektroInfo No 1–2; Grupa Medium: Warsaw, Poland, 2021. [Google Scholar]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Dudek, J.; Zaleska-Bartosz, J. Acquisition and use of biogas for energy purposes. Probl. Ekol. 2010, 14, 13–16. [Google Scholar]
- Obrycka, A. Social and economic benefits of constructing agricultural biogas plants. Scientific Journals of the Warsaw University of Life Sciences—SGGW. Econ. Organ. Food Econ. 2014, 107, 163–176. [Google Scholar]
- Pawlak, J. Biogas from Agriculture—Benefits and Barriers; Falenty Institute of Technology and Life Sciences, Warsaw Branch: Warsaw, Poland, 2013; pp. 99–108. [Google Scholar]
- Prochnow, A.; Heiermann, M.; Plöchl, M.; Linke, B.; Idler, C.; Amon, T.; Hobbs, P.J. Bioenergy from permanent grassland—A review: 1. Biogas. Bioresour. Technol. 2009, 100, 4931–4944. [Google Scholar] [CrossRef] [PubMed]
- EN 61000-4-30; Electromagnetic Compatibility (EMC)-Part 4-30: Testing and Measurement Techniques-Power Quality Measurement Methods. EU: Maastricht, The Netherlands, 2015.
- EN 50160:2010; Supply Voltage Parameters for Public Distribution Networks. EU: Maastricht, The Netherlands, 2010.
- Regulation of the Minister of Economy of 4 May 2007 on Detailed Conditions for the Operation of the Electricity System. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20070930623 (accessed on 4 June 2023).
- Instruction for the Operation and Maintenance of the Distribution Network (Approved by Decision of the President of the ERO No. DRR-4321-29(5)/2013/MKo4 of 10 September 2013). Available online: https://pgedystrybucja.pl/strefa-klienta/przydatne-dokumenty/akordeon-przydatne-dokumenty/instrukcja-ruchu-i-eksploatacji-sieci-dystrybucyjnej (accessed on 4 June 2023).
Internal Combustion Engine | |
---|---|
Engine type | WG1605 |
Cycle | Otto |
Number of cylinders | 4 |
Speed | 2700 rpm |
Rated active power | 20 kW |
Nominal apparent power | 26 kVA |
Primary energy consumption | 62.5 kW |
Electrical efficiency | 32% |
Total efficiency | 97% |
Thermal power | 40.9 kW |
Maximum flue gas temperature | 110 °C |
Rated voltage | 400 V |
Rated current | 29 A |
Power factor cos ϕ rated | 0.97 |
Generator | |
Type | Asynchronous 4P/IE2 |
Rated speed | 1500 rpm |
Rated frequency | 50 Hz |
Rated voltage | 3 × 400 V |
Winding connection | triangle |
Variable | Apparent Power S | |||
---|---|---|---|---|
Pearson Correlations | Spearman Rank Order Correlations | Gamma Correlations | Kendall Tau Correlations | |
Voltage U | 0.363376 | 0.390800 | 0.295968 | 0.295949 |
Voltage deviation ΔU | 0.362725 | 0.390300 | 0.295535 | 0.295524 |
Power factor tgφ | 0.585901 | 0.460740 | 0.313709 | 0.313709 |
Voltage asymmetry factor kU2 | 0.011067 | −0.015419 | −0.009762 | −0.009762 |
Current asymmetry factor kI2 | −0.268349 | −0.270219 | −0.179850 | −0.179850 |
Voltage distortion factor THDU | −0.347478 | −0.284441 | −0.197056 | −0.196958 |
Marked correlations were significant at p < 0.05000 |
Voltage U [V] | Voltage Asymmetry Factor kU2 [%] | Current Asymmetry Factor kI2 [%] | Voltage Distortion Factor THDU [%] | Apparent Power S [kVA] | |
---|---|---|---|---|---|
Valid N | 9998 | 9998 | 9998 | 9998 | 9998 |
Mean | 417.8139 | 0.3512 | 5.6134 | 4.2454 | 35.6261 |
Median | 420.6652 | 0.3286 | 5.3602 | 4.1433 | 36.9863 |
Minimum | 366.3967 | 0.0212 | 0.9005 | 2.5333 | 26.8018 |
Maximum | 435.4828 | 1.1171 | 17.7779 | 10.4367 | 42.2088 |
Lower Quartile | 410.7167 | 0.2437 | 4.2537 | 3.2367 | 31.9492 |
Upper Quartile | 427.2263 | 0.4454 | 6.6771 | 5.0914 | 37.7431 |
Std. Dev. | 11.9951 | 0.1492 | 1.8568 | 1.0542 | 3.4882 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tymińska, M.; Skibko, Z.; Borusiewicz, A. The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies 2023, 16, 4600. https://doi.org/10.3390/en16124600
Tymińska M, Skibko Z, Borusiewicz A. The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies. 2023; 16(12):4600. https://doi.org/10.3390/en16124600
Chicago/Turabian StyleTymińska, Magdalena, Zbigniew Skibko, and Andrzej Borusiewicz. 2023. "The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply" Energies 16, no. 12: 4600. https://doi.org/10.3390/en16124600
APA StyleTymińska, M., Skibko, Z., & Borusiewicz, A. (2023). The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies, 16(12), 4600. https://doi.org/10.3390/en16124600