Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Fe3O4
2.3. Characterization
2.4. Evaluation of Adsorption Capacity
Generic Name | Abbreviation | Cas Number | Chemical Structure | λmax (nm) |
---|---|---|---|---|
Xylenol orange | XO | 1611-35-4 | 435 | |
Basic orange 2 | BO2 | 532-82-1 | 452 | |
Acid orange 7 | AO7 | 633-96-5 | 484 |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ding, Z.; Yang, W.; Huo, K.; Shaw, L. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage. Prog. Chem. 2021, 33, 1586–1597. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Optical, electrical and magnetic properties of lanthanum strontium manganite La1−xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 2017, 19, 6878–6886. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Z.; Ma, T.; Lu, C.T.; Ma, W.; Shaw, L. Predicting the hydrogen release ability of LiBH4-based mixtures by ensemble machine learning. Energy Storage Mater. 2020, 27, 466–477. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Hassan, A.M.; Elnaggar, E.M.; Bechelany, M. Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1−xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ ion contents. RSC Adv. 2016, 6, 17980–17986. [Google Scholar] [CrossRef]
- De Oca, R.M.G.F.-M.; Ramos-Leal, J.A.; Solache-Ríos, M.J.; Martínez-Miranda, V.; Fuentes-Rivas, R.M. Modification of the Relative Abundance of Constituents Dissolved in Drinking Water Caused by Organic Pollution: A Case of the Toluca Valley, Mexico. Water Air Soil Poll. 2019, 230, 171. [Google Scholar] [CrossRef]
- Ding, Z.; Li, H.; Shaw, L. New Insights into the Solid-State Hydrogen Storage of Nanostructured LiBH4-MgH2 System. Chem. Eng. J. 2019, 385, 123856. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Comparison of Experimental Ponds for the Treatment of Dye Wastewater under Controlled and Semi-natural Conditions. Environ. Sci. Pollut. Res. 2017, 24, 16031–16040. [Google Scholar] [CrossRef]
- Ding, Z.; Li, S.; Zhou, Y.; Chen, Z.; Zhang, F.; Wu, P.; Ma, W. LiBH4 for Hydrogen Storage: New Perspectives. Nano Mater. Sci. 2020, 2, 109–119. [Google Scholar] [CrossRef]
- Hashmi, S.S.; Shah, M.; Muhammad, W.; Ahmad, A.; Ullah, M.A.; Nadeem, M.; Abbasi, B.H. Potentials of Phyto-fabricated Nanoparticles as Ecofriendly Agents for Photocatalytic Degradation of Toxic Dyes and Waste Water Treatment, Risk Assessment and Probable Mechanism. J. Indian Chem. Soc. 2021, 98, 100019. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Liu, J.; Ji, X.; Ma, J.; Tian, G. Preparation and Excellent Adsorption of water Pollution Dyes over Magnetic Fe3O4/C Nanoparticles with Hollow Grape Cluster Morphology. J. Nanopart. Res. 2020, 22, 196. [Google Scholar] [CrossRef]
- Huong, D.T.M.; Chai, W.S.; Show, P.L.; Lin, Y.L.; Chiu, C.Y.; Tsai, S.L.; Chang, Y.K. Removal of Cationic Dye Waste by Nanofiber Membrane Immobilized with Waste Proteins. Int. J. Biol. Macromol. 2020, 164, 3873–3884. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zheng, H.; Zhao, R.; Xiong, Z.; Wang, Y.; Sun, Y.; Ding, W. Sulfonic Acid-modified Polyacrylamide Magnetic Composite with Wide pH Applicability for Efficient Removal of Cationic Dyes. J. Mol. Liq. 2020, 319, 114161. [Google Scholar] [CrossRef]
- Qi, J.; Wen, J.; Wang, Q.; Jin, X.; Zhou, X. Preparation and Photocatalytic Properties of Hexagonal and Orthogonal CuS Micro-nanoparticles by an Oil-water Interface Method. Mater. Chem. Phys. 2020, 255, 123629. [Google Scholar] [CrossRef]
- Fan, T.; Deng, W.; Feng, X.; Pan, F.; Li, Y. An Integrated Electrocoagulation-Electrocatalysis Water Treatment Process using Stainless Steel Cathodes Coated with Ultrathin TiO2 Nanofilms. Chemosphere 2020, 254, 126776. [Google Scholar] [CrossRef] [PubMed]
- Kiwaan, H.A.; Mohamed, F.S.; El-Ghamaz, N.A.; Beshry, N.M.; El-Bindary, A.A. Experimental and Electrical Studies of Na-X zeolite for the Adsorption of Different Dyes. J. Mol. Liq. 2021, 332, 115877. [Google Scholar] [CrossRef]
- Feizpoor, S.; Habibi-Yangjeh, A.; Chand, H.; Krishnan, V. Integration of Bi5O7I with TiO2: Binary Photocatalysts with Boosted Visible-light Photocatalysis in Removal of Organic Contaminants. J. Photochem. Photobiol. A 2021, 410, 113190. [Google Scholar] [CrossRef]
- Sosa-Martínez, J.D.; Balagurusamy, N.; Montañez, J.; Peralta, R.A.; de Fátima Peralta-Muniz-Moreira, R.; Bracht, A.; Peralta, R.M.; Morales-Oyervides, L. Synthetic Dyes Biodegradation by Fungal Ligninolytic Enzymes: Process Optimization, Metabolites Evaluation and Toxicity Assessment. J. Hazard. Mater. 2020, 400, 123254. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.L.; Shao, C.B. Removal of Xylenol Orange from Solutions by γ-Cyclodextrin-Grafted Carboxymethyl Cellulose. Adv. Mater. Res. 2011, 204–210, 1180–1183. [Google Scholar] [CrossRef]
- Ding, Z.; Lu, Y.; Li, L.; Shaw, L. High Reversible Capacity Hydrogen Storage Through Nano-LiBH4 + Nano-MgH2 System. Energy Storage Mater. 2019, 20, 24–35. [Google Scholar] [CrossRef]
- Ding, Z.; Wu, P.; Shaw, L. Solid-state Hydrogen Desorption of 2 MgH2 + LiBH4 Nano-mixture: A Kinetics Mechanism Study. J. Alloys Compd. 2019, 806, 350–360. [Google Scholar] [CrossRef]
- Bayantong, A.R.B.; Shih, Y.-J.; Ong, D.C.; Abarca, R.R.M.; Dong, C.-D.; de Luna, M.D.G. Adsorptive Removal of Dye in Wastewater by Metal Ferrite-enabled Graphene Oxide Nanocomposites. Chemosphere 2021, 274, 129518. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Zhao, G.; Pan, L.; Chen, B.; Chen, Y.; Zhang, Q.; Xiao, X.; Xu, W. Efficient Removal of Dye from Wastewater without Selectivity Using Activated Carbon-Juncus Effusus Porous Fibril Composites. ACS Appl. Mater. Interfaces 2021, 13, 19176–19186. [Google Scholar] [CrossRef] [PubMed]
- Ghadhban, M.Y.; Majdi, H.S.; Rashid, K.T.; Alsalhy, Q.F.; Lakshmi, D.S.; Salih, I.K.; Figoli, A. Removal of Dye from a Leather Tanning Factory by Flat-Sheet Blend Ultrafiltration (UF) Membrane. Membranes 2020, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Raja, Y.S.; Samsudin, M.F.R.; Sufian, S. Development of the Low-Cost and Green Hibiscus cannabinus Bioadsorbent for the Removal of Dye in Wastewater. Arab. J. Sci. Eng. 2020, 46, 6349–6358. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M.H. Novel Approach for Effective Removal of Methylene Blue Dye from Water using Fava Bean Peel Waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef]
- Amiralian, N.; Mustapic, M.; Hossain, M.S.A.; Wang, C.; Konarova, M.; Tang, J.; Na, J.; Khan, A.; Rowan, A. Magnetic nanocellulose: A Potential Material for Removal of Dye from Water. J. Hazard. Mater. 2020, 394, 122571. [Google Scholar] [CrossRef]
- Turky, A.O.; Mohamed Rashad, M.; Taha Kandil, A.E.-H.; Bechelany, M. Tuning the optical, electrical and magnetic properties of Ba0.5Sr0.5TixM1-xO3 (BST) nanopowders. Phys. Chem. Chem. Phys. 2015, 17, 12553–12560. [Google Scholar] [CrossRef]
- Turky, A.O.; Rashad, M.M.; Bechelany, M. Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 2016, 90, 54–59. [Google Scholar] [CrossRef]
- Chen, S.; Chi, M.; Zhu, Y.; Gao, M.; Wang, C.; Lu, X. A Facile Synthesis of Superparamagnetic Fe3O4 Nanofibers with Superior Peroxidase-like Catalytic Activity for Sensitive Colorimetric Detection of L-cysteine. Appl. Surf. Sci. 2018, 440, 237–244. [Google Scholar] [CrossRef]
- Yang, J.; Kou, Q.; Liu, Y.; Wang, D.; Lu, Z.; Chen, L.; Zhang, Y.Y.; Wang, Y.; Zhang, Y.J.; Han, D.; et al. Effects of Amount of Benzyl Ether and Reaction Time on the Shape and Magnetic Properties of Fe3O4 Nanocrystals. Powder Technol. 2017, 319, 53–59. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Ding, L.; Zhao, X.; Liu, P.; Li, T. Synthesis of Covalently Bonded Reduced Graphene Oxide-Fe3O4 Nanocomposites for Efficient Electromagnetic Wave Absorption. J. Mater. Sci. Technol. 2020, 72, 93–103. [Google Scholar] [CrossRef]
- Eskandari, M.J.; Hasanzadeh, I. Size-controlled Synthesis of Fe3O4 Magnetic Nanoparticles via an Alternating Magnetic Field and Ultrasonic-assisted Chemical Co-precipitation. Mater. Sci. Eng. B Adv. 2021, 266, 115050. [Google Scholar] [CrossRef]
- Zhu, C.; Xia, Y.; Zai, Y.; Dai, Y.; Liu, X.; Bian, J.; Liu, J.; Li, G. Adsorption and Desorption Behaviors of HPEI and Thermoresponsive HPEI based Gels on Anionic and Cationic Dyes. Chem. Eng. J. 2019, 369, 863–873. [Google Scholar] [CrossRef]
- Bai, H.; Li, Z.; Zhang, S.; Wang, W.; Dong, W. Interpenetrating Polymer Networks in Polyvinyl Alcohol/cellulose Nanocrystals Hydrogels to Develop Absorbent Materials. Carbohyd. Polym. 2018, 200, 468–476. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T.; Sun, D.; Li, R. Facile Synthesis of Superparamagnetic Fe3O4 Nanoparticles Just using Ferric Citrate and Water. Integr. Ferroelectr. 2016, 176, 179–183. [Google Scholar] [CrossRef]
- Zhu, M.; Diao, G. Synthesis of Porous Fe3O4 Nanospheres and Its Application for the Catalytic Degradation of Xylenol Orange. J. Phys. Chem. C 2011, 115, 313–318. [Google Scholar] [CrossRef]
- Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, M.; Saeed, K.; Ahmad, I.; Sultan, S.; Akhtar, S. Coal ash as a low cost adsorbent for the removal of xylenol orange from aqueous solution. Iran. J. Chem. Chem. Eng. 2014, 33, 53–58. Available online: https://www.researchgate.net/publication/293158575 (accessed on 1 March 2014).
- Bai, Q.; Wang, W.; Liang, T.; Bai, H.Y.; Liu, X.Y. Preparation of porous amino-cellulose membrane and their adsorption performance of xylenol orange. J. Cellul. Sci. Technol. 2017, 25, 30–37. [Google Scholar] [CrossRef]
- Pang, X.; Yang, C.; Ren, S. Adsorption capacity of expansion graphite for xylenol orange. J. Mater. Sci. Chem. Eng. 2013, 1, 1–5. [Google Scholar] [CrossRef]
- Garrudo-Guirado, M.I.; Blanco-Flores, A.; Toledo-Jaldin, H.P.; Sanchez-Mendieta, V.; Vilchis-Nestor, A.R. Reuse of sustainable materials for xylenol orange dye and copper (II) ion ammoniacal removal. J. Environ. Manag. 2018, 206, 920–928. [Google Scholar] [CrossRef]
- Wang, X.; Kong, W.; Xie, W.; Li, L.; Liu, Y.; Wu, X.; Gao, J. Bi-porous bioinspired chitosan foams with layered structure and their adsorption for xylenol orange. Chem. Eng. J. 2012, 197, 509–516. [Google Scholar] [CrossRef]
Langmuir Parameters | |||
---|---|---|---|
XO Dye | BO2 Dye | AO7 Dye | |
qm (mg/g) | 42.5 | 1.3 | 3.8 |
R2 | 0.9991 | 0.9546 | 0.7904 |
Authors | Adsorbent Name | Synthetic Method | qm (mg/g) |
---|---|---|---|
Ishaq [38] | Coal ash | Heated at 750 °C | 0.74 |
Bai [39] | Porous amino-cellulose membrane | TEMPO oxidation and ethylenediamine grafting | 15 |
Pang [40] | Expansion graphite | Chemical oxidation intercalation of potassium permanganate and vitriol | 18.15 |
Garrudo-Guirado [41] | Vitreous tuff mineral (VT) | Milled and sieved to 60 mesh | 45.17 |
Wang [42] | Bi-porous chitosan monoliths | Unidirectional freeze-drying method under vacuum less than 20 Pa for 48 h | 153.8 |
Zhu [33] | Hyperbranched polyethyleneimine (HPEI) based gel | Cross-linking reaction between HPEI and N,N′-methylene-bis-acrylamide | 3312.06 |
Xu in this work | Fe3O4 nanoparticles | One-pot hydrothermal process at 200 °C for 24 h | 42.5 |
Dye | qe,exp (mg/g) | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
qe1,cal (mg/g) | k1 (1/h) | R2 | qe2,cal (mg/g) | k1 (g/mg·h) | R2 | ||
XO | 9.847 | 1.7906 | 7.1318 | 0.7328 | 10.0452 | 6.4352 | 0.9998 |
BO2 | 2.444 | 6.2516 | 0.2983 | 0.6316 | 2.8740 | 2.8272 | 0.9859 |
AO7 | 0.614 | 8.9600 | 0.0383 | 0.5564 | 0.7223 | 18.9232 | 0.9959 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, Q.; Ding, Z. Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water. Energies 2022, 15, 7378. https://doi.org/10.3390/en15197378
Xu Y, Wang Q, Ding Z. Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water. Energies. 2022; 15(19):7378. https://doi.org/10.3390/en15197378
Chicago/Turabian StyleXu, Yaohui, Qin Wang, and Zhao Ding. 2022. "Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water" Energies 15, no. 19: 7378. https://doi.org/10.3390/en15197378
APA StyleXu, Y., Wang, Q., & Ding, Z. (2022). Synthesis of Superparamagnetic Fe3O4 Nano-Adsorbent Using an Energy-Saving and Pollution-Reducing Strategy for the Removal of Xylenol Orange Dye in Water. Energies, 15(19), 7378. https://doi.org/10.3390/en15197378