Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation
Abstract
1. Introduction
2. Description of Schemes
3. Methodology
4. Assessing the Systems Effectiveness
4.1. Basic Scheme
4.2. Modified Scheme
5. Discussion
6. Conclusions
- -
- optimization of flow arrangement in the vortex granulator as a core device in the scheme to provide additional utilization of fine fraction of ammonium nitrate;
- -
- consideration of various combinations of operating modes in the same workspace of the device to meet the drying agent’s optimal heat potential;
- -
- detailed calculations of the proposed scheme and its further study are required, considering the design features, materials and processes inside the equipment;
- -
- experimental investigation of devices for indirect regenerative evaporative cooling;
- -
- detailed analysis of the proposed sub-atmospheric inverse Brayton cycle and other cycles as a core for power generation and heat recovery module.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
specific isobaric heat capacity | |
humidity ratio in humid air | |
system efficiency indicator | |
specific exergy flow of the substance | |
enthalpy | |
specific work | |
mass flow rate | |
pressure | |
specific heat flow | |
entropy | |
temperature | |
substance exergy flow | |
power | |
heat flow | |
gas constant | |
absolute temperature | |
Greek symbols | |
efficiency coefficient | |
Subscripts | |
dead state | |
process air | |
air to spray solution | |
air for product cooling | |
ambient air | |
ambient air | |
ambient air supplied to Brayton’s sub-atmospheric inverse cycle with HAR | |
a substandard stream that passed the recycling module in which lower oxides passed into higher ones; it is also a thermal energy source necessary for the unit’s operation | |
irregular flow | |
dry air | |
destruction | |
exergy | |
fuel | |
humid air | |
input | |
isentropic | |
index | |
loss | |
ammonium nitrate | |
seeding agent of the ammonium nitrate | |
output | |
product | |
useful effect | |
saturation state | |
water vapor | |
water | |
Superscripts | |
basic | |
modified | |
Designations on the diagrams | |
exergy of the substance flow | |
material flow | |
exergy of energy flow |
References
- Carole, T.; Scheihing, P.; Sousa, L. Energy Efficiency and Use in the Chemical Industry. ACEEE Proc. 2001, 1, 267–275. [Google Scholar]
- Fawkes, S.; Oung, K.; Thorpe, D. Best Practices and Case Studies for Industrial Energy Efficiency Improvement. In An Introduction for Policy Makers; UNEP DTU Partnership: Copenhagen, Denmark, 2016; p. 173. [Google Scholar]
- Patt, J.J.; Banholzer, W.F. Improving Energy Efficiency in the Chemical Industry. Bridg. Energy Effic. 2009, 39, 15–21. [Google Scholar]
- Duroudier, J.-P. Heat Transfer in the Chemical, Food and Pharmaceutical Industries; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-1-78548-188-8. [Google Scholar]
- Hipple, J. Chemical Engineering for Non-Chemical Engineers; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-1-119-30965-9. [Google Scholar]
- Kapustenko, P.O.; Kukulka, D.J.; Arsenyeva, O.P. Intensification of heat transfer processes. Chem. Eng. Trans. 2015, 45, 1729–1734. [Google Scholar] [CrossRef]
- Beller, M.; Böhland, T.; Demtröder, D.; Ebenhoech, J.; Ernst, S.; Ewers, J.; Haber, S.; Hoer, R.; Hirth, T.; Jahn, D.; et al. Change in the Raw Materials Base; GDCh: Frankfurt, Germany, 2010. [Google Scholar]
- Ali, M.F.; Ali, B.M.; Speight, J.G. Handbook of Industrial Chemistry: Organic Chemicals; McGraw-Hill Education: New York, NY, USA, 2005; ISBN 9780071410373. [Google Scholar]
- Stahl, H.; Van Vaerenbergh, G. Single-Pot Processing. In Handbook of Pharmaceutical Granulation Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 311–332. ISBN 9780849354953. [Google Scholar]
- Litster, J.; Ennis, B. The Science and Engineering of Granulation Processes; 31 March 2004; Springer: Berlin/Heidelberg, Germany, 2004; ISBN 978-94-017-0546-2. [Google Scholar]
- Stahl, H. Comparing Granulation Methods; GEA Pharma Systems: Hürth, Germany, 2010. [Google Scholar]
- Muralidhar, P.; Bhargav, E.; Sowmya, C. Novel Techniques of Granulation: A Review. Int. Res. J. Pharm. 2016, 7, 8–13. [Google Scholar] [CrossRef]
- Stahl, H. Comparing Different Granulation Techniques. In Pharmaceutical Technology; PharmTech: Muellheim, Germany, 2004; pp. 22–33. [Google Scholar]
- Sahoo, C.K.; Rao, S.R.M.; Sudhakar, M.; Bhaskar, J. Advances in granulation technology. Res. J. Pharm. Technol. 2016, 9, 571–580. [Google Scholar] [CrossRef]
- Athar, M. A technical note on granulation technology: A way to optimise granules. Int. J. Pharm. Sci. Rev. Res. 2013, 4, 55–67. [Google Scholar]
- Artyukhov, A.Y.; Sklabinskiy, V.I. Experimental and industrial implementation of porous ammonium nitrate producing process in vortex granulators. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2013, 6, 42–48. [Google Scholar]
- Cardarelli, F. Fuels, Propellants, and Explosives. In Materials Handbook; Springer International Publishing: Cham, Switzerland, 2018; pp. 1465–1496. ISBN 3527302107. [Google Scholar]
- Janssen, T.J. Explosive Materials: Classification, Composition and Properties; Nova Science Publishers: New York, NY, USA, 2011; ISBN 1617611883. [Google Scholar]
- Artyukhov, A.E.; Sklabinskiy, V.I. Investigation of the Temperature Field of Coolant in the Installations for Obtaining 3D Nanostructured Porous Surface Layer on the Granules of Ammonium Nitrate. J. Nano-Electron. Phys. 2017, 9, 01015. [Google Scholar] [CrossRef]
- Artyukhova, N.O. Morphological Features of the Nanoporous Structure in the Ammonium Nitrate Granules at the Final Drying Stage in Multistage Devices. J. Nano-Electron. Phys. 2020, 12, 04036. [Google Scholar] [CrossRef]
- Artyukhov, A.; Obodiak, V.; Boiko, P.; Rossi, P. Computer modeling of hydrodynamic and heat-mass transfer processes in the vortex type granulation devices. In CEUR Workshop Proceedings; ICTERI: Kyiv, Ukraine, 2017; pp. 33–47. [Google Scholar]
- Artyukhov, A.E.; Artyukhova, N.O. Technology and the Main Technological Equipment of the Process to Obtain N4HNO3 with Nanoporous Structure. In Springer Proceedings in Physics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 585–594. [Google Scholar]
- Artyukhov, A.E.; Ivaniia, A.V. Obtaining porous ammonium nitrate in multistage and multifunctional vortex granulators. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2017, 7, 68–75. [Google Scholar]
- Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V. Maisotsenko cycle applications for multistage compressors cooling. IOP Conf. Ser. Mater. Sci. Eng. 2017, 233, 012023. [Google Scholar] [CrossRef]
- Levchenko, D.; Pavlenko, I.; Shulumei, A.; Ochowiak, M.; Manzharov, A. Parameter Identification of the Capillary Rising Process in Nanomaterials for Evaporative Cooling Applications. In Design, Simulation, Manufacturing: The Innovation Exchange; Springer: Cham, Switzerland, 2020; pp. 201–215. [Google Scholar]
- Choi, C.-H.; Krishnan, S.; TeGrotenhuis, W.; Chang, C.-H. Capillary Rise of Nanostructured Microwicks. Micromachines 2018, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Artyukhova, N.O.; Krmela, J. Nanoporous Structure of the Ammonium Nitrate Granules at the Final Drying: The Effect of the Dryer Operation Mode. J. Nano-Electron. Phys. 2019, 11, 04006. [Google Scholar] [CrossRef]
- Levchenko, D.O.; Artyukhov, A.E.; Yurko, I.V. Maisotsenko cycle applications in multi-stage ejector recycling module for chemical production. IOP Conf. Ser. Mater. Sci. Eng. 2017, 233, 012024. [Google Scholar] [CrossRef]
- Buyadgie, D.; Buyadgie, O.; Drakhnia, O.; Brodetsky, P.; Maisotsenko, V. Solar low-pressure turbo-ejector Maisotsenko cycle-based power system for electricity, heating, cooling and distillation. Int. J. Low-Carbon Technol. 2015, 10, 157–164. [Google Scholar] [CrossRef]
- Khalatov, A.A.; Severin, S.D.; Brodetsky, P.I.; Maisotsenko, V.S. Brayton’s subatmospheric inverse cycle with regeneration of output heat by Maisotsenko’s cicle. Rep. Natl. Acad. Sci. Ukr. 2015, 72–79. [Google Scholar] [CrossRef]
- Mahmood, M.H.; Sultan, M.; Miyazaki, T.; Koyama, S.; Maisotsenko, V.S. Overview of the Maisotsenko cycle—A way towards dew point evaporative cooling. Renew. Sustain. Energy Rev. 2016, 66, 537–555. [Google Scholar] [CrossRef]
- Kozlov, A.; Chudnovsky, Y. Combined Cooling, Heating And Power System. U.S. patent 16/297928, 12 September 2019. [Google Scholar]
- Piacentino, A. Thermal analysis and new insights to support decision making in retrofit and relaxation of heat exchanger networks. Appl. Therm. Eng. 2011, 31, 3479–3499. [Google Scholar] [CrossRef][Green Version]
- Asante, N.D.K.; Zhu, X.X. An Automated and Interactive Approach for Heat Exchanger Network Retrofit. Chem. Eng. Res. Des. 1997, 75, 349–360. [Google Scholar] [CrossRef]
- Safder, U.; Ifaei, P.; Yoo, C. A novel approach for optimal energy recovery using pressure retarded osmosis technology: Chemical exergy pinch analysis—Case study in a sugar mill plant. Energy Convers. Manag. 2020, 213, 112810. [Google Scholar] [CrossRef]
- Bejan, A. Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics. Rev. Générale Therm. 1996, 35, 637–646. [Google Scholar] [CrossRef]
- Korpyś, M.; Gancarczyk, A.; Iwaniszyn, M.; Sindera, K.; Jodłowski, P.J.; Kołodziej, A. Analysis of entropy production in structured chemical reactors: Optimization for catalytic combustion of air pollutants. Entropy 2020, 22, 1017. [Google Scholar] [CrossRef] [PubMed]
- Besagni, G. Ejectors on the cutting edge: The past, the present and the perspective. Energy 2019, 170, 998–1003. [Google Scholar] [CrossRef]
- Брoдянский, B.; Фратшер, B.; Михалек, K. Эксергетический метoд и егo прилoжения; Энергoатoм: Мoсква, Рoссия, 1988; ISBN 5-283-00152-0. [Google Scholar]
- Morosuk, T.; Tsatsaronis, G. Advanced exergy-based methods used to understand and improve energy-conversion systems. Energy 2019, 169, 238–246. [Google Scholar] [CrossRef]
- Sayadi, S.; Tsatsaronis, G.; Morosuk, T.; Baranski, M.; Sangi, R.; Müller, D. Exergy-based control strategies for the efficient operation of building energy systems. J. Clean. Prod. 2019, 241, 118277. [Google Scholar] [CrossRef]
- Athari, H.; Soltani, S.; Rosen, M.A.; Gavifekr, M.K.; Morosuk, T. Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel. Renew. Energy 2016, 96, 715–726. [Google Scholar] [CrossRef]
- Fazelpour, F.; Morosuk, T. Exergoeconomic analysis of carbon dioxide transcritical refrigeration machines. Int. J. Refrig. 2014, 38, 128–139. [Google Scholar] [CrossRef]
- Jannatkhah, J.; Najafi, B.; Ghaebi, H. Energy and exergy analysis of combined ORC—ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Convers. Manag. 2020, 209, 112658. [Google Scholar] [CrossRef]
- MOROSUK, T.; TSATSARONIS, G. A new approach to the exergy analysis of absorption refrigeration machines. Energy 2008, 33, 890–907. [Google Scholar] [CrossRef]
- Morosuk, T.; Tsatsaronis, G. Advanced exergy analysis for chemically reacting systems—Application to a simple open gas-turbine system. Int. J. Thermodyn. 2009, 12, 105–111. [Google Scholar] [CrossRef]
- Morosuk, T.; Tsatsaronis, G. Splitting physical exergy: Theory and application. Energy 2019, 167, 698–707. [Google Scholar] [CrossRef]
- Shargut, Y. Exergy; Shargut, R.P., Ed.; Energiia: Moscow, Russia, 1968. [Google Scholar]
- Yukhimenko, N.; Vakal, S. The exergy analysis of energy efficiency of the technology of granulated phosphorus-potassium fertilizers. East.-Eur. J. Enterp. Technol. 2016, 5, 4–10. [Google Scholar] [CrossRef]
- Quoilin, S.; Lemort, V. Technological and Economical Survey of Organic Rankine Cycle Systems. In Proceedings of the 5th European Conference Economics and Management of Energy in Industry, Algarve, Portugal, 14–17 April 2009; Volume 278, p. 12. [Google Scholar]
- Madhawa, H.; Golubovic, M.; Worek, W.; Ikegami, Y. Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources. Energy 2007, 32, 1698–1706. [Google Scholar] [CrossRef]
- Živić, M.; Galović, A.; Avsec, J.; Holik, M. Exergy analysis of a Brayton cycle with variable physical properties and variable composition of working substance. Teh. Vjesn. Tech. Gaz. 2016, 23, 801–808. [Google Scholar] [CrossRef]
Index | |||||
---|---|---|---|---|---|
1608 | 293 | 101,325 | - | 0 | |
835 | 293 | 101,325 | - | 0 | |
15,000 | 293 | 101,325 | 0.00877 | 0 | |
453.6 | 293 | 101,325 | 0.00877 | 0 | |
12,000 | 293 | 101,325 | 0.00877 | 0 | |
557 | 293 | 101,325 | - | 0 | |
- | - | - | - | 120 | |
- | - | - | - | 32 | |
- | - | - | - | 75 | |
- | - | - | - | 2.5 | |
- | - | - | - | 3 | |
- | - | - | - | 3 | |
- | - | - | - | 40 | |
- | - | - | - | 120 | |
1608 | 293 | 101,325 | - | 0 | |
395.5 |
Index | |||||
---|---|---|---|---|---|
33.6 | 293 | 101,325 | - | 0 | |
8.4 | 293 | 101,325 | - | 110.8 | |
12,000 | 293 | 101,325 | 0.00877 | 0 | |
18,097 | 293 | 101,325 | 0.00877 | 0 | |
2243 | 293 | 101,325 | 0.00877 | 0 | |
1188 | 293 | 101,325 | 0.00877 | 0 | |
2442 | 293 | - | - | 0 | |
6516 | 291 | 101,325 | - | 0 | |
- | - | - | - | 3 | |
- | - | - | - | 120 | |
- | - | - | - | 7.6 | |
- | - | - | - | 0.2 | |
- | - | - | - | 385 | |
- | 626.5 | ||||
415.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levchenko, D.; Manzharov, A.; Artyukhov, A.; Artyukhova, N.; Krmela, J. Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation. Energies 2021, 14, 280. https://doi.org/10.3390/en14020280
Levchenko D, Manzharov A, Artyukhov A, Artyukhova N, Krmela J. Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation. Energies. 2021; 14(2):280. https://doi.org/10.3390/en14020280
Chicago/Turabian StyleLevchenko, Dmytro, Andrii Manzharov, Artem Artyukhov, Nadiya Artyukhova, and Jan Krmela. 2021. "Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation" Energies 14, no. 2: 280. https://doi.org/10.3390/en14020280
APA StyleLevchenko, D., Manzharov, A., Artyukhov, A., Artyukhova, N., & Krmela, J. (2021). Comparative Exergy Analysis of Units for the Porous Ammonium Nitrate Granulation. Energies, 14(2), 280. https://doi.org/10.3390/en14020280