Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Previous Tests
2.1.1. Granulometric Analysis
- Average grain diameter (D50): 0.769 mm.
- Uniformity coefficient (Cu): 2.935.
- Coefficient of curvature (Cc): 1.367.
2.1.2. Density Test
2.1.3. Direct Shear Test
2.1.4. Triaxial Shear Test
2.1.5. Tensile Test
2.2. Scale Tests
2.2.1. PISA Model: Dimensions and Speed Test
- Pile diameters of 0.273 m, 0.762 m, and 2.0 m,
- Embedded lengths between 1.43 m and 10.5 m, providing a range of standard length 3 < L/D < 10,
- Wall thicknesses 7 mm to 38 mm, providing a range of standard thickness 30 < D/t < 80,
- Speed load of D/300 or D/500 per minute,
2.2.2. CBR Test
2.2.3. Characteristics and Dimensions of Scale Test
- The pool dimensions were as follows (Figure 10):
- ○
- 2 × 2 × 1 m steel pool with 5 mm thickness,
- ○
- Lower plate of 2.3 × 2.3 with 3 mm thickness that served as the base of the pool,
- ○
- 50 cm high triangular stiffener increasing the stiffness in two directions.
2.2.4. Scale Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Luengo Frades, J.; Negro Valdecantos, V.; García Barba, J.; Lopez Guiterrez, J.S.; Esteban, M.D. Offshore Wind Energy. Create a Lot of Questions. Give Some Answers. Renew. Energy 2019, 131, 667–677. [Google Scholar]
- Esteban, M.D.; Diez, J.; López, J.S.; Negro, V. Why offshore wind energy? Renew. Energy 2011, 36, 444–450. [Google Scholar] [CrossRef] [Green Version]
- Luengo Frades, J.; Negro, V.V.; García Barba, J.; Soriano Vicedo, J.; Martín-Antón, M. Blue Economy: Compatibility between the Increasing Offshore Wind Technology and the Achievement of the SDG. J. Coast. Res. 2020, 95, 1490–1494. [Google Scholar] [CrossRef]
- Lam, I.P.O. Diameter Effects on p-y Curves. Deep Marine Foundations—A Perspective on the Design and Construction of Deep Marine Foundations. In Proceedings of the Third International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2015), Oslo, Norway, 10–12 June 2015. [Google Scholar]
- DNVGL-ST-0126. Support Structure for Wind Turbines; DNV: Bærum, Norway, 2016. [Google Scholar]
- API. RP 2A-WSD—Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms; American Petroleum Institute: Washington, DC, USA, 2010. [Google Scholar]
- Arroyo, M.; Abadías, D.; Alcoverrro, J.; Gens, A. Shallow Foundations for Offshore Wind Towers. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 May 2013. [Google Scholar]
- Butlanska, J.; Arroyo, M.; Gens, A. Steady State of Solid-Grain Interfaces During Simulated CPT. Studia Geotech. Mech. 2013, 35, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Randolph, M.F. Science and Empiricism in Pile Foundation Design. Géotechnique 2003, 53, 847–875. [Google Scholar] [CrossRef]
- Bülow, L.; Jorgensen, L.; Gravessen, H. Kriegers Flak Offshore Wind Farm. Basic Data for Conceptual Design of Foundations; Vattenfall Vindkraft AB: Solna, Sweden, 2009. [Google Scholar]
- Lesny, K. Foundations for Offshore Wind Turbines: Tools for Planning and Design; VGE: Essen, Germany, 2010. [Google Scholar]
- Lesny, K. Design Approaches of Eurocode 7 and their Effect on the Safety of Shallow Foundations. In ICASP10, Applications of Statistics and Probability in Civil Engineering; Taylor & Francis: Abingdon-on-Thames, UK, 2007. [Google Scholar]
- Passon, P.; Branner, K.; Larsen, S.E.; Hvenekær Rasmussen, J. Offshore Wind Turbine Foundation Design. Ph.D. Thesis, PDTU Wind Energy, Technical University of Denmark, Kgs. Lyngby, Denmark, 2015. [Google Scholar]
- Luengo Frades, J.; Negro Valdecantos, V.; García Barba, J.; Lopez Guiterrez, J.S.; Esteban, M.D. New Detected Uncertainties in the Design of Foundations for Offshore Wind Turbines. Renew. Energy 2019, 131, 667–677. [Google Scholar] [CrossRef]
- Byrne, B.W.; McAdam, R.; Burd, H.J.; Houlsby, G.T. PISA- New Design Methods for Offshore Wind Turbines. In Proceedings of the 8th International Conference, Royal Geographical Society, London, UK, 12–14 September 2017. [Google Scholar]
- Taborda, D.M.G.; Zdravkovi, L.; Kontoe, S.; Potts, D.M. Computational Study on the Modification of a Bounding Surface Plasticity Model for Sands. Comput. Geotech. 2014, 59, 145–160. [Google Scholar] [CrossRef] [Green Version]
- Chow, F.C. Investigations into the Behaviour of Displacement Piles for Offshore Foundations. Ph.D. Thesis, Imperial College, London, UK, 1997. [Google Scholar]
- Jardine, R.J.; Standing, J.R.; Chow, F.C. Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand. Géotechnique 2006, 554, 227–244. [Google Scholar] [CrossRef]
- Lopez, I.; Lopez, M.; Aragones, L.; García-Barba, J.; Lopez, M.P.; Sánchez, I. The Erosion of the Beaches on the Coast of Alicante: Study of Themechanisms of Weathering by Accelerated Laboratory Tests. Sci. Total Environ. 2016, 567, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Guillen, J.; Hoekstra, P. The Equilibrium Distribution of Grain Size Fractions and its Implications for Cross-Shore Sediment Transport: A conceptual model. Mar. Geol. 1996, 135, 15–33. [Google Scholar] [CrossRef]
- UNE-EN 933-1 Standard. Ensayos para Determinar las Propiedades Geométricas de los Áridos (Tests to Determine the Geometric Properties of Aggregates); Spanish Association for Standardisation-UNE: Madrid, Spain, 2012. [Google Scholar]
- UNE 103101:1995 Standard. Análisis Granulométrico de Suelos por Tamizado. (Article Size Analysis of a Soil by Screening); Spanish Association for Standardisation-UNE: Madrid, Spain, 1995. [Google Scholar]
- ASTM D6913/D6913M–17. Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Lopez, I. Clasificación Morfológica de las Playas y Modelado del Perfil Transversal en Valencia, Alicante y Muercia. Ph.D. Thesis, Universidad Alicante, San Vicente del Raspeig, Spain, 2016. [Google Scholar]
- Almazán Gárate, J.L.; Palomino Monzón, M.C.; García Montes, J.R. Introducción a la Dinámica de las Formas Costeras; Universidad Politécnica de Madrid: Madrid, Spain, 2000. [Google Scholar]
- UNE-EN 1097-6 Standard. Ensayos para Determinar las Propiedades Mecánicas y Físicas de los Aridos. Parte 6: Determinacion de la Densidad de Partículas y la Absorción de Agua (Tests to Determine the Mechanical and Physical Properties of Aggregates); Spanish Association for Standardisation-UNE: Madrid, Spain, 2014. [Google Scholar]
- UNE 103 401 Standard. Determinación de los Parámetros Resistentes al Esfuerzo Cortante de una Muestra de Suelo en la Caja de Corte Directo (Determination of the Shear Resistant Parameters of a Soil Sample in the Direct Cutting Box); Spanish Association for Standardisation-UNE: Madrid, Spain, 1998. [Google Scholar]
- Soriano Vicedo, J.; Luengo Frades, J.; García Barba, J.; Negro Valdecantos, V. Modified Soil Test for Scour Analysis on Offshore Windfarm Foundations. Trans. Eng. Sci. 2019, 125, 185–194. [Google Scholar]
- UNE-EN ISO 17892-9:2019 Standard. Investigación y Ensayos Geotécnicos. Ensayos de Laboratorio de Suelos. Parte 9: Ensayos de Compresión Triaxial Consolidados en Suelos Saturados de Agua (Geotechnical Investigation and Testing–Laboratory Testing of Soil—Part 9: Consolidated Triaxial Compression Tests on Water Saturated Soils. Part 6: Determination of Particle Density and Water Absorption); Spanish Association for Standardisation-UNE: Madrid, Spain, 2019. [Google Scholar]
- Alexa Calderón Goyeneche, L.; Mayerly Argüello Romero, D. Estado del Arte del Uso del Ensayo spt Con Fines de Correlación de Parametros Mohr-coulomb; Universidad Católica de Colombia: Bogota, Colombia, 2014. [Google Scholar]
- Latini, C.; Zania, V. Triaxial Tests in Fontainebleau Sand; Technical University of Denmark: Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Tatsuoka, F.; Sato, T.; Park, C.; Kim, Y.S.; Mukabi, J.N.; Kohata, Y. Measurements of Elastic Properties of Geomaterials in Laboratory Compression Tests. Geotech. Test. J. 1994, 17, 80–84. [Google Scholar]
- UNE-EN ISO 6892-1:2020 Standard. Materiales metálicos. Ensayo de tracción. Parte 1: Método de Ensayo a Temperatura Ambiente (Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature); Spanish Association for Standardisation-UNE: Madrid, Spain, 2020. [Google Scholar]
- UNE 103 502 Standard. Método de Ensayo para Determinar en Laboratorio el Índice C.B.R de un Suelo (Test Laboratory Method for Determining in a Soil the c.b.r. Index.); Spanish Association for Standardisation-UNE: Madrid, Spain, 1995. [Google Scholar]
- Song Dai, B.H.; Guoxiang, H.; Xiaoqiang, G.; Liu, J.; Shiliang, L. Failure Mode of Monopile Foundation for Offshore Wind Turbine in Soft Clay Under Complex Loads. Mar. Georesour. Geotechnol. 2020, 1–12. [Google Scholar] [CrossRef]
- Kelly, R.B.; Houlsby, G.T.; Byrne, B.W. A comparison of field and laboratory caisson tests in sand and clay. Géotechnique 2006, 9, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Butlanska, J.; Arroyo, M.; Gens, A.; O’Sullivan, C. Multi-scale analysis of cone penetration test (CPT) in a virtual calibration chamber. Can. Geotech. J. 2014, 51, 51–66. [Google Scholar] [CrossRef]
- Phuong, N.T.V.; Van Tol, A.F.; Elkadi, A.S.K.; Rohe, A. Numerical investigation of pile installation effects in sand using material point method. Comput. Geotech. 2016, 73, 58–71. [Google Scholar] [CrossRef]
- Jiang, M.J.; Harris, D.; Zhu, H.H. Future continuum models for granular materials in penetration analyses. Granul. Matter 2007, 9, 97–108. [Google Scholar] [CrossRef]
- Gurevitz Esposito, R.; Quadros Velloso, R.; Amaral Vargas, E.; Ragoni Danziger, B. Multi-scale sensitivity analysis of pile installation using DEM materials in penetration analyses. Comput. Part. Mech. 2018, 5, 375–386. [Google Scholar] [CrossRef]
Sample 1 | Sample 2 | Sample 3 | |
---|---|---|---|
ρsand (g/cm3) | 2.615 | 2.628 | 2.639 |
ρsand,average (g/cm3) | - | - | 2.626 |
Friction angle (ϕ) | 34.08° |
Cohesion (c) | ~0 kg/cm2 |
Breaking Load (kN) | Breaking Strain (MPa) | |
---|---|---|
Sample 1 | 16.50 | 458.35 |
Sample 2 | 16.61 | 461.34 |
Sample 3 | 16.56 | 459.98 |
Average | 16.56 | 459.89 |
Dim. in mm | Tube 1 | Tube 2 | Tube 3 |
---|---|---|---|
L, total (Lt) | 910 | 700 | 600 |
L, embedded (Le) | 450 | 375 | 350 |
Diameter (D) | 194 | 115 | 80 |
Thickness (t) | 4 | 3 | 3 |
3 < Le/D < 10 | 2.3 | 3.26 | 4.06 |
30 < D/t < 80 | 48.5 | 38.3 | 26.7 |
Speed (mm/min) | Tube 1 (φ80 mm)—Hollow | Tube 2 (φ115 mm)—Hollow | Tube 3 (φ194 mm)—Hollow | |||
Force (kN) | Relation | Force (kN) | Relation | Force (kN) | Relation | |
5 | 1.59 | 1.00 | 3.71 | 1.00 | 7.53 | 1.00 |
10 | 2.23 | 1.40 | 5.42 | 1.46 | 8.99 | 1.19 |
20 | 2.41 | 1.52 | 6.29 | 1.70 | 9.91 | 1.32 |
Speed (mm/min) | Tube 1 (φ80 mm)—Flat | Tube 2 (φ115 mm)—Flat | Tube 3 (φ194 mm)—Flat | |||
Force (kN) | Relation | Force (kN) | Relation | Force (kN) | Relation | |
5 | 4.48 | 1.00 | 8.00 | 1.00 | 18.81 | 1.00 |
10 | 6.27 | 1.40 | 10.50 | 1.31 | 23.64 | 1.26 |
20 | 6.71 | 1.50 | 11.94 | 1.49 | 28.15 | 1.50 |
Diameter (mm) | Speed 5 mm/min—Hollow | Speed 10 mm/min—Hollow | Speed 20 mm/min—Hollow | |||
Force (kN) | Relation | Force (kN) | Relation | Force (kN) | Relation | |
80 | 1.59 | 1.00 | 2.23 | 1.00 | 2.41 | 1.00 |
115 | 3.71 | 2.33 | 5.42 | 2.43 | 6.29 | 2.61 |
194 | 7.53 | 4.74 | 8.99 | 4.04 | 9.91 | 4.11 |
Diameter (mm) | Speed 5 mm/min—Flat | Speed 10 mm/min—Flat | Speed 20 mm/min—Flat | |||
Force (kN) | Relation | Force (kN) | Relation | Force (kN) | Relation | |
80 | 4.48 | 1.00 | 6.27 | 1.00 | 6.71 | 1.00 |
115 | 8.00 | 1.79 | 10.50 | 1.67 | 11.94 | 1.78 |
194 | 18.81 | 4.19 | 23.64 | 3.77 | 28.15 | 4.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicedo, J.S.; Barba, J.G.; Frades, J.L.; Valdecantos, V.N. Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations. Energies 2021, 14, 5904. https://doi.org/10.3390/en14185904
Vicedo JS, Barba JG, Frades JL, Valdecantos VN. Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations. Energies. 2021; 14(18):5904. https://doi.org/10.3390/en14185904
Chicago/Turabian StyleVicedo, Jorge Soriano, Javier García Barba, Jorge Luengo Frades, and Vicente Negro Valdecantos. 2021. "Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations" Energies 14, no. 18: 5904. https://doi.org/10.3390/en14185904
APA StyleVicedo, J. S., Barba, J. G., Frades, J. L., & Valdecantos, V. N. (2021). Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations. Energies, 14(18), 5904. https://doi.org/10.3390/en14185904