Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings
Abstract
1. Introduction
2. On the Numerical Modeling
3. Repowering of Wind Turbine Towers
3.1. Description of the Wind Turbine Tower Models
3.1.1. The 50 m tower models
3.1.2. The 150 m-Tower Models
3.1.3. The 250 m-Tower Models
3.2. Efficiency Repowering Range of Design Variables for Repowering
3.2.1. Efficiency Repowering Range of the Thickness T
3.2.2. Efficiency Repowering Range of the Mid-Section Width-to-Thickness Ratio R of the Stiffening Rings
3.2.3. Efficiency Repowering Range of the Spacing H
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Types of Towers | Max. Stress (MPa) | Max. Stress of Shell (MPa) | Max. Horizontal Sway (mm) | ||||||
---|---|---|---|---|---|---|---|---|---|
50 m | 150 m | 250 m | 50 m | 150 m | 250 m | 50 m | 150 m | 250 m | |
TiRiHi | 171.2 | 351.2 | 208.9 | 113.4 | 91.14 | 107.6 | 20.96 | 199.4 | 648.75 |
TiiRiHi | 113.8 | 230.4 | 152.9 | 50.89 | 65.94 | 98.74 | 11.07 | 176.15 | 598.28 |
TiiiRiHi | 76.1 | 154.9 | 113.7 | 31.30 | 57.17 | 91.45 | 8.47 | 157.8 | 555.10 |
TivRiHi | 50.94 | 106.8 | 85.79 | 21.88 | 51.62 | 85.39 | 6.92 | 143.05 | 517.76 |
TiRiiHi | 109.9 | 280.1 | 199.5 | 109.9 | 89.96 | 107.47 | 20.57 | 199.27 | 648.53 |
TiiRiiHi | 72.09 | 194.4 | 147.5 | 49.1 | 64.75 | 98.65 | 11.07 | 176.04 | 598.07 |
TiiiRiiHi | 52.58 | 136.2 | 110.7 | 30.47 | 56.91 | 91.42 | 8.46 | 157.75 | 554.91 |
TivRiiHi | 37.84 | 96.71 | 85.379 | 21.53 | 51.49 | 85.38 | 6.91 | 142.97 | 517.58 |
TiRiiiHi | 107.7 | 210.5 | 186.1 | 107.7 | 83.08 | 107.2 | 20.23 | 198.97 | 648.00 |
TiiRiiiHi | 47.75 | 155.8 | 139.9 | 47.75 | 63.02 | 98.50 | 11.03 | 175.8 | 597.57 |
TiiiRiiiHi | 33.61 | 114.7 | 106.4 | 29.70 | 56.47 | 91.35 | 8.43 | 157.55 | 554.44 |
TivRiiiHi | 26.11 | 84.59 | 85.36 | 21.15 | 51.26 | 85.36 | 6.88 | 142.79 | 517.15 |
TiRivHi | 106.7 | 171.8 | 173.0 | 106.7 | 76.84 | 106.9 | 20.05 | 198.66 | 647.43 |
TiiRivHi | 47.14 | 132.5 | 131.6 | 47.14 | 62.37 | 98.35 | 10.99 | 175.55 | 597.02 |
TiiiRivHi | 29.31 | 100.9 | 101.0 | 29.31 | 56.11 | 91.29 | 8.40 | 157.33 | 553.93 |
TivRivHi | 20.92 | 76.45 | 85.35 | 20.92 | 51.07 | 85.35 | 6.86 | 142.61 | 516.68 |
TiRiHii | 110.7 | 327.7 | 308.2 | 80.93 | 85.28 | 96.47 | 16.84 | 199.38 | 636.62 |
TiiRiHii | 83.88 | 221.1 | 243.5 | 41.21 | 64.20 | 88.36 | 11.07 | 176.13 | 586.11 |
TiiiRiHii | 60.39 | 151.6 | 195.7 | 27.33 | 57.09 | 81.64 | 8.47 | 157.82 | 542.93 |
TivRiHii | 44.68 | 106.2 | 159.8 | 20.05 | 51.58 | 76.0 | 6.92 | 143.03 | 505.6 |
TiRiiHii | 77.65 | 272.1 | 266.8 | 77.65 | 85.12 | 95.25 | 16.84 | 199.2 | 636.59 |
TiiRiiHii | 53.36 | 195.5 | 215.4 | 39.09 | 63.56 | 87.50 | 11.06 | 175.98 | 585.99 |
TiiiRiiHii | 41.83 | 140.2 | 175.9 | 25.95 | 56.76 | 81.02 | 8.46 | 157.7 | 542.77 |
TivRiiHii | 31.83 | 101.3 | 145.3 | 19.2 | 51.41 | 75.55 | 6.91 | 142.92 | 505.42 |
TiRiiiHii | 75.2 | 187.3 | 211.5 | 75.20 | 76.53 | 93.51 | 16.71 | 198.84 | 636.33 |
TiiRiiiHii | 37.4 | 143.6 | 175.1 | 37.4 | 62.58 | 86.23 | 10.99 | 175.67 | 585.64 |
TiiiRiiiHii | 27.71 | 109.2 | 146.1 | 24.73 | 56.23 | 80.09 | 8.41 | 157.44 | 542.38 |
TivRiiiHii | 22.68 | 82.66 | 123.2 | 18.36 | 51.13 | 74.85 | 6.87 | 142.69 | 505.02 |
TiRivHii | 74.24 | 154.9 | 176.6 | 74.24 | 69.43 | 92.3 | 16.62 | 198.46 | 635.95 |
TiiRivHii | 36.77 | 122.5 | 148.5 | 36.77 | 61.82 | 85.33 | 10.92 | 175.36 | 585.23 |
TiiiRivHii | 24.24 | 95.18 | 125.9 | 24.24 | 55.8 | 79.41 | 8.36 | 157.17 | 541.96 |
TivRivHii | 17.98 | 73.28 | 107.5 | 17.98 | 50.89 | 74.33 | 6.83 | 142.46 | 504.61 |
TiRiHiii | 78.00 | 306.9 | 290.6 | 62.69 | 66.65 | 95.81 | 16.77 | 195.28 | 636.61 |
TiiRiHiii | 63.39 | 230.4 | 232.7 | 34.37 | 58.26 | 87.9 | 11.05 | 172.09 | 586.07 |
TiiiRiHiii | 50.34 | 175.0 | 188.8 | 24.01 | 51.83 | 81.32 | 8.46 | 153.83 | 542.87 |
TivRiHiii | 40.2 | 134.7 | 155.1 | 18.35 | 46.73 | 75.76 | 6.91 | 139.07 | 505.52 |
TiRiiHiii | 59.53 | 214.9 | 241.4 | 59.53 | 63.97 | 94.21 | 16.73 | 195.12 | 636.48 |
TiiRiiHiii | 39.9 | 169.8 | 197.8 | 32.27 | 56.54 | 86.76 | 11.02 | 171.94 | 585.82 |
TiiiRiiHiii | 33.34 | 134.8 | 163.5 | 22.49 | 50.66 | 80.49 | 8.44 | 153.69 | 542.58 |
TivRiiHiii | 26.91 | 107.7 | 136.3 | 17.29 | 45.92 | 75.15 | 6.89 | 138.94 | 505.22 |
TiRiiiHiii | 57.29 | 137.0 | 185.6 | 57.29 | 61.25 | 92.11 | 16.51 | 194.79 | 635.9 |
TiiRiiiHiii | 30.66 | 113.0 | 156.3 | 30.66 | 54.59 | 85.19 | 10.90 | 171.64 | 585.18 |
TiiiRiiiHiii | 21.25 | 93.31 | 132.5 | 21.25 | 49.25 | 79.31 | 8.35 | 153.42 | 541.92 |
TivRiiiHiii | 18.09 | 77.38 | 112.9 | 16.34 | 44.89 | 74.26 | 6.83 | 138.7 | 504.56 |
TiRivHiii | 56.29 | 101.4 | 147.7 | 56.29 | 59.71 | 90.75 | 16.35 | 194.44 | 635.18 |
TiiRivHiii | 29.93 | 85.35 | 126.6 | 29.93 | 53.44 | 84.15 | 10.79 | 171.34 | 584.46 |
TiiiRivHiii | 20.66 | 71.96 | 109.0 | 20.66 | 48.39 | 78.50 | 8.28 | 153.16 | 541.21 |
TivRivHiii | 15.86 | 60.83 | 94.25 | 15.86 | 44.24 | 73.64 | 6.77 | 138.47 | 503.9 |
TiRiHiv | 52.42 | 274.9 | 279.5 | 52.42 | 65.68 | 95.20 | 16.48 | 195.24 | 636.6 |
TiiRiHiv | 38.68 | 211.1 | 225.0 | 27.41 | 57.71 | 87.47 | 10.80 | 172.05 | 586.00 |
TiiiRiHiv | 32.20 | 163.3 | 183.4 | 18.15 | 51.46 | 81.01 | 8.22 | 153.79 | 542.77 |
TivRiHiv | 26.68 | 127.6 | 151.1 | 13.29 | 46.48 | 75.54 | 6.67 | 139.04 | 505.43 |
TiRiiHiv | 49.88 | 188.0 | 224.0 | 49.88 | 62.92 | 93.32 | 16.38 | 195.03 | 636.34 |
TiiRiiHiv | 25.94 | 151.6 | 186.0 | 25.94 | 55.81 | 86.11 | 10.74 | 171.85 | 585.64 |
TiiiRiiHiv | 19.79 | 122.6 | 155.6 | 17.15 | 50.15 | 80.01 | 8.17 | 153.62 | 542.38 |
TivRiiHiv | 16.94 | 99.54 | 131.1 | 12.57 | 45.56 | 74.79 | 6.63 | 138.88 | 505.02 |
TiRiiiHiv | 48.04 | 114.5 | 159.3 | 48.04 | 60.13 | 90.98 | 16.06 | 194.58 | 635.41 |
TiiRiiiHiv | 24.78 | 96.26 | 136.4 | 24.78 | 53.77 | 84.34 | 10.59 | 171.46 | 584.68 |
TiiiRiiiHiv | 16.34 | 80.96 | 117.2 | 16.34 | 48.64 | 78.66 | 8.09 | 153.27 | 541.43 |
TivRiiiHiv | 11.99 | 68.47 | 101.2 | 11.99 | 44.44 | 73.76 | 6.58 | 138.56 | 504.1 |
TiRivHiv | 47.17 | 86.74 | 128.1 | 47.17 | 58.63 | 89.57 | 15.83 | 194.13 | 634.32 |
TiiRivHiv | 24.26 | 74.4 | 111.2 | 24.26 | 52.63 | 83.23 | 10.46 | 171.07 | 583.64 |
TiiiRivHiv | 15.99 | 63.89 | 96.80 | 15.99 | 47.77 | 77.8 | 8.0 | 152.92 | 540.44 |
TivRivHiv | 11.72 | 54.96 | 84.56 | 11.72 | 43.78 | 73.09 | 6.52 | 138.26 | 503.17 |
References
- Martíneza, E.; Latorre-Bielb, J.I.; Jiménezc, E.; Sanza, F.; Blancoa, J. Life cycle assessment of a wind farm repowering process. Renew. Sustain. Energy Rev. 2018, 93, 260–271. [Google Scholar] [CrossRef]
- Buchsbaum, L.; Patel, S. Wind turbine repowering is on the horizon. Power 2016, 160, 52–55. [Google Scholar]
- Tziavos, N.; Hemida, H.; Metje, N.; Baniotopoulos, C. Non-linear Finite Element Analysis of Grouted Connections for Offshore Monopile Wind Turbines. Ocean Eng. 2018, 171, 633–645. [Google Scholar] [CrossRef]
- Tziavos, N.I.; Hemida, H.; Dirar, S.; Papaelias, M.; Metje, N.; Baniotopoulos, C.C. Structural health monitoring of grouted connections for offshore wind turbines by means of acoustic emission: An experimental study. Renew. Energy 2019, 147, 130–140. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Chen, S.-J.; Ma, H.; Feng, T. Design defect of wind turbine operating in typhoon activity zone. Eng. Fail. Anal. 2013, 27, 165–172. [Google Scholar] [CrossRef]
- Kilic, G.; Unluturk, M.S. Testing of wind turbine towers using wireless sensor network and accelerometer. Renew. Energy 2015, 75, 318–325. [Google Scholar] [CrossRef]
- Binh, L.V.; Ishihara, T.; Phuc, P.V.; Fujino, Y. A peak factor for non-Gaussian response analysis of wind turbine tower. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2217–2227. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.G.; Lee, I.K. Seismic fragility analysis of 5 MW offshore wind turbine. Renew. Energy 2014, 65, 250–256. [Google Scholar] [CrossRef]
- Tondini, N.; Hoang, V.L.; Demonceau, J.F.; Franssen, J.M. Experimental and numerical investigation of high-strength steel circular columns subjected to fire. J. Constr. Steel Res. 2013, 80, 57–81. [Google Scholar] [CrossRef]
- Van der Woude, C.; Narasimhan, S. A study on vibration isolation for wind turbine structures. Eng. Struct. 2014, 60, 223–234. [Google Scholar] [CrossRef]
- Tran, A.T.; Veljkovic, M.; Rebelo, C.; Simões da Silva, L. Resistance of door openings in towers for wind turbines. In Proceedings of the Third South-East European Conference on Computational Mechanics 2013, Kos Island, Greece, 12–14 June 2013. [Google Scholar]
- Do, T.Q.; Mahmoud, H.; van de Lindt, J.W. Fatigue life of wind turbine tower bases throughout Colorado. J. Perfor. Constr. Facil. 2014, 29, 04014109. [Google Scholar] [CrossRef]
- Schneider, W.; Zahlten, W. Load-bearing behaviour and structural analysis of slender ring-stiffened cylindrical shells under quasi-static wind load. J. Constr. Steel Res. 2004, 60, 125–146. [Google Scholar] [CrossRef]
- Valamanesh, V.; Myers, A.T. Aerodynamic Damping and Seismic Response of Horizontal Axis Wind Turbine Towers. J. Struct. Eng. 2014, 140, 04014090. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.; Jiao, H. Behavior of thin-walled circular hollow section tubes subjected to bending. Thin-Walled Struct. 2013, 73, 281–289. [Google Scholar] [CrossRef]
- Ghanbari Ghazijahani, T.; Jiao, H.; Holloway, D. Structural behavior of shells with different cutouts under compression: An experimental study. J. Constr. Steel Res. 2015, 105, 129–137. [Google Scholar] [CrossRef]
- Sabouri-Ghomi, S.; Kharrazi, M.H.K.; Javidan, P. Effect of stiffening rings on buckling stability of R.C. hyperbolic cooling towers. Thin-Walled Struct. 2006, 44, 152–158. [Google Scholar] [CrossRef]
- Perelmuter, A.; Yurchenko, V. Parametric optimization of steel towers of high-power wind turbines. 11th international conference on modern building materials, structures and techniques, MBMST. Procedia Eng. 2013, 57, 895–905. [Google Scholar] [CrossRef]
- Sim, H.-B.; Prowell, I.; Elgamal, A.; Uang, C.-M. Flexural tests and associated study of a full-scale 65-kW wind turbine tower. J. Struct. Eng. 2014, 140, 04013110. [Google Scholar] [CrossRef]
- Hu, Y.; Baniotopoulos, C.C.; Yang, J. Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers. Eng. Struct. 2014, 81, 148–161. [Google Scholar] [CrossRef]
- Negm, H.M.; Maalawi, K.Y. Structural design optimization of wind turbine towers. Comput. Struct. 2000, 74, 649–666. [Google Scholar] [CrossRef]
- Shi, G.; Jiang, X.; Zhou, W.; Chan, T.-M.; Zhang, Y. Experimental study on column buckling of 420MPa high strength steel welded circular tubes. J. Constr. Steel Res. 2014, 100, 71–81. [Google Scholar] [CrossRef]
- Zhu, J.H.; Young, B. Design of cold-formed steel oval hollow section columns. J. Constr. Steel Res. 2012, 71, 26–37. [Google Scholar] [CrossRef]
- Karpat, F. A virtual tool for minimum cost design of a wind turbine tower with ring stiffeners. Energies 2013, 6, 3822–3840. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Li, J. Numerical investigation of the strengthening method by circumferential prestressing to improve the fatigue life of embedded-ring concrete foundation for onshore wind turbine tower. Energies 2020, 13, 533. [Google Scholar] [CrossRef]
- Ding, H.; Feng, Z.; Zhang, P.; Le, C.; Guo, Y. Floating performance of a composite bucket foundation with an offshore wind tower during transportation. Energies 2020, 13, 882. [Google Scholar] [CrossRef]
- ABAQUS/Standard and ABAQUS/Explicit-Version 6.8-1. In Abaqus Theory Manual, Dassault System; Dassault System: Paris, France, 2008.
- Rebelo, C.; Veljkovic, M.; Simões da Silva, L.; Simões, R.; Henriques, J. Structural monitoring of a wind turbine steel tower Part I system description and calibration. Wind Struct. 2012, 15, 285–299. [Google Scholar] [CrossRef]
- Rebelo, C.; Veljkovic, M.; Matos, R.; Simões da Silva, L. Structural monitoring of a wind turbine steel tower Part II monitoring results. Wind Struct. 2012, 15, 301–311. [Google Scholar] [CrossRef]
- ENV 1991-01-04: Actions on Structures; CEN: Brussels, Belgium, 1991.
- Lavassas, I.; Nikolaidis, G.; Zervas, P.; Efthimiou, E.; Doudoumis, I.N.; Baniotopoulos, C.C. Analysis and design of the prototype of a steel 1-MW wind turbine tower. Eng. Struct. 2003, 25, 1097–1106. [Google Scholar] [CrossRef]
- Baniotopoulos, C.C.; Borri, C.; Stathopoulos, T. (Eds.) Environmental Wind Engineering and Design of Wind Energy Structures; Springer: New York, NY, USA, 2010. [Google Scholar]
Size of Elements (mm) | Max. von Mises Stress (MPa) | Max. Horizontal Sway (mm) |
---|---|---|
400 | 102.64 | 575.13 |
300 | 103.9 | 572.8 |
200 | 102 | 570.7 |
100 | 101.6 | 568.5 |
80 | 101.6 | 568.5 |
50 | 101.6 | 568.5 |
Values | Numerical Results | Experimental Results | Errors |
---|---|---|---|
Stress at level 0 | 72.99 MPa | 73 MPa | 0.01% |
Stress at level 1 | 66.41 MPa | 68 MPa | 1.96% |
Sway at level 3 | 534.8 mm | 534.23 mm | 0.1% |
50 m Towers | Height Range of the Towers | Mid-Section Width-to-Thickness Ratio of Rings | Spacing of Rings (m) | Thickness of Rings (mm) | |||
---|---|---|---|---|---|---|---|
0–33.334 m | 33.334 m–50 m | ||||||
Thickness | Thickness | ||||||
Ti | 15 mm | 5 mm | Ri | 0.5 | Hi | 16.667 | 50 |
Tii | 20 mm | 10 mm | Rii | 1 | Hii | 10 | 100 |
Tiii | 25 mm | 15 mm | Riii | 2 | Hiii | 6.25 | 200 |
Tiv | 30 mm | 20 mm | Riv | 3 | Hiv | 4.167 | 300 |
150 m Towers | Height Range of the Towers | Ratio of Mid-Section Width-to-Thickness of Rings | Spacing of Rings (m) | Thickness of Rings (mm) | ||||
---|---|---|---|---|---|---|---|---|
0 to 50 m | 50 to 100 m | 100 to 150 m | ||||||
Thickness | Thickness | Thickness | ||||||
Ti | 40 mm | 30 mm | 25 mm | Ri | 0.5 | Hi | 18.75 | 50 |
Tii | 45 mm | 35 mm | 30 mm | Rii | 1 | Hii | 15 | 100 |
Tiii | 50 mm | 40 mm | 35 mm | Riii | 2 | Hiii | 11.544 | 200 |
Tiv | 55 mm | 45 mm | 40 mm | Riv | 3 | Hiv | 9.375 | 300 |
250 m Towers | Height Range of the Towers | Ratio of Mid-Section Width-to-Thickness of Rings | Spacing of Rings (m) | Thickness of Rings (mm) | ||||
---|---|---|---|---|---|---|---|---|
0 to 100 m | 100 to 200 m | 200 to 250 m | ||||||
Thickness | Thickness | Thickness | ||||||
Ti | 60 mm | 50 mm | 45 mm | Ri | 0.5 | Hi | 25 | 50 |
Tii | 65 mm | 55 mm | 50 mm | Rii | 1 | Hii | 16.667 | 100 |
Tiii | 70 mm | 60 mm | 65 mm | Riii | 2 | Hiii | 11.364 | 200 |
Tiv | 75 mm | 65 mm | 60 mm | Riv | 3 | Hiv | 8.612 | 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Yang, J.; Baniotopoulos, C. Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings. Energies 2020, 13, 1538. https://doi.org/10.3390/en13071538
Hu Y, Yang J, Baniotopoulos C. Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings. Energies. 2020; 13(7):1538. https://doi.org/10.3390/en13071538
Chicago/Turabian StyleHu, Yu, Jian Yang, and Charalampos Baniotopoulos. 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings" Energies 13, no. 7: 1538. https://doi.org/10.3390/en13071538
APA StyleHu, Y., Yang, J., & Baniotopoulos, C. (2020). Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings. Energies, 13(7), 1538. https://doi.org/10.3390/en13071538