Next Article in Journal
Mixed Convection and Entropy Generation of an Ag-Water Nanofluid in an Inclined L-Shaped Channel
Previous Article in Journal
A Novel Fast MPPT Strategy for High Efficiency PV Battery Chargers
Article

Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language

Workgroup for Infrastructure Policy (WIP), Technische Universität Berlin, H 33, Straße des 17. Juni 135, 10623 Berlin, Germany
*
Author to whom correspondence should be addressed.
Energies 2019, 12(6), 1153; https://doi.org/10.3390/en12061153
Received: 19 December 2018 / Revised: 17 March 2019 / Accepted: 19 March 2019 / Published: 25 March 2019
(This article belongs to the Section Energy Economics and Policy)
In this paper we introduce a five-fold approach to open science comprised of open data, open-source software (that is, programming and modeling tools, model code, and numerical solvers), as well as open-access dissemination. The advantages of open energy models are being discussed. A fully open-source bottom-up electricity sector model with high spatial resolution using the Julia programming environment is then being developed, describing source code and a data set for Germany. This large-scale model of the electricity market includes both generation dispatch from thermal and renewable sources in the spot market as well as the physical transmission network, minimizing total system costs in a linear approach. It calculates the economic dispatch on an hourly basis for a full year, taking into account demand, infeed from renewables, storage, and exchanges with neighboring countries. Following the open approach, the model code and used data set are fully publicly accessible and we use open-source solvers like ECOS and CLP. The model is then being benchmarked regarding runtime of building and solving against a representation in GAMS as a commercial algebraic modeling language and against Gurobi, CPLEX, and Mosek as commercial solvers. With this paper we demonstrate in a proof-of-concept the power and abilities, as well as the beauty of open-source modeling systems. This openness has the potential to increase the transparency of policy advice and to empower stakeholders with fewer financial possibilities. View Full-Text
Keywords: power systems modeling; open source; algebraic modeling language; optimization; benchmarking; Julia; JuMP power systems modeling; open source; algebraic modeling language; optimization; benchmarking; Julia; JuMP
Show Figures

Figure 1

MDPI and ACS Style

Weibezahn, J.; Kendziorski, M. Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language. Energies 2019, 12, 1153. https://doi.org/10.3390/en12061153

AMA Style

Weibezahn J, Kendziorski M. Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language. Energies. 2019; 12(6):1153. https://doi.org/10.3390/en12061153

Chicago/Turabian Style

Weibezahn, Jens, and Mario Kendziorski. 2019. "Illustrating the Benefits of Openness: A Large-Scale Spatial Economic Dispatch Model Using the Julia Language" Energies 12, no. 6: 1153. https://doi.org/10.3390/en12061153

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop