Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus and Materials
2.2. Experimental Procedures
2.3. Theoretical Method
2.4. Calibration Test
3. Results and Discussion
3.1. Effects of the Excess Gas Method on P-Wave Variation
3.2. Effects of the Excess Water Method on P-Wave Variation
3.3. Effects of Hydrate Saturation on Attenuation
3.4. Effects of Hydrate Saturation on P-Wave Velocity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sloan, E.D., Jr. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.R.; Koh, C.A.; Sloan, E.D.; Sum, A.K.; Wu, D.T. Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 2009, 326, 1095–1098. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Sloan, E.D., Jr. Mechanisms and kinetics of hydrate formation. Annal. N. Y. Acad. Sci. 1994, 715, 283–305. [Google Scholar] [CrossRef]
- Yang, L.; Falenty, A.; Chaouachi, M.; Haberthür, D.; Kuhs, W.F. Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix. Geochem. Geophys. Geosyst. 2016, 17, 3717–3732. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Cheng, C.; Song, Y.; Liu, W.; Liu, Y.; Xue, K.; Zhu, Z.; Yang, Z.; Wang, D.; Yang, M. Heat transfer analysis of methane hydrate sediment dissociation in a closed reactor by a thermal method. Energies 2012, 5, 1292–1308. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.; Lv, Q.; Yang, M.; Ling, Z.; Zhao, J. Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods. RSC Adv. 2016, 6, 47357–47367. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Lim, X.L.; Lam, W.H. Opportunities and challenges of gas hydrate policies with consideration of environmental impacts. Renew. Sustain. Energy Rev. 2017, 70, 875–885. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Wang, J.; Zhao, J.; Dong, H.; Yang, M.; Liu, Y.; Song, Y. Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate. Chem. Eng. J. 2017, 308, 40–49. [Google Scholar] [CrossRef]
- Wang, B.; Huo, P.; Luo, T.; Fan, Z.; Liu, F.; Xiao, B.; Yang, M.; Zhao, J.; Song, Y. Analysis of the physical properties of hydrate sediments recovered from the pearl river mouth basin in the South China Sea: Preliminary investigation for gas hydrate exploitation. Energies 2017, 10, 531. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, S.; Wan, Q.; Li, B.; Liu, H.; Han, X. Comparison and optimization of methane hydrate production process using different methods in a single vertical well. Energies 2019, 12, 124. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, J.; Liu, W.; Li, Y.; Yang, M.; Song, Y. Microstructure observations of natural gas hydrate occurrence in porous media using microfocus x-ray computed tomography. Energy Fuels 2015, 29, 4835–4841. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, B.; Sum, A.K. Dynamics of hydrate formation and deposition under pseudo multiphase flow. AIChE J. 2017, 63, 4136–4146. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.; Wang, P.; Zhao, Y.; Song, Y. In situ observation of methane hydrate dissociation under different backpressures. Energy Fuels 2015, 29, 3251–3256. [Google Scholar] [CrossRef]
- Castagna, J.P.; Batzle, M.L.; Eastwood, R.L. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 1985, 50, 571–581. [Google Scholar] [CrossRef]
- Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A. Methane gas hydrate effect on sediment acoustic and strength properties. J. Pet. Sci. Eng. 2007, 56, 127–135. [Google Scholar] [CrossRef]
- Yang, J.; Tohidi, B. Determination of hydrate inhibitor concentrations by measuring electrical conductivity and acoustic velocity. Energy Fuels 2013, 27, 736–742. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic velocity models for gas-hydrate-bearing sediments—A comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Egawa, K.; Ito, T.; Suzuki, K.; Nagao, J. Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Mar. Pet. Geol. 2015, 66, 425–433. [Google Scholar] [CrossRef]
- Waite, W.F.; Winters, W.J.; Mason, D.H. Methane hydrate formation in partially water-saturated Ottawa sand. Am. Min. 2004, 89, 1202–1207. [Google Scholar] [CrossRef]
- Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. Am. Mineral. 2004, 89, 1221–1227. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Marín-Moreno, H.; North, L.J.; Falcon-Suarez, I.; Madhusudhan, B.N.; Best, A.I.; Minshull, T.A. Presence and consequences of co-existing methane gas with hydrate under two phase water-hydrate stability conditions. J. Geophys. Res. Solid Earth 2018, 123, 3377–3390. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Madhusudhan, B.N.; Marín-Moreno, H.; North, L.J.; Ahmed, S.; Falcon-Suarez, I.H.; Minshull, T.A.; Best, A.I. Laboratory Insights into the Effect of Sediment-Hosted Methane Hydrate Morphology on Elastic Wave Velocity from Time-Lapse 4-D Synchrotron X-Ray Computed Tomography. Geochem. Geophys. Geosyst. 2018, 19, 4502–4521. [Google Scholar] [CrossRef]
- Pohl, M.; Prasad, M.; Batzle, M.L. Ultrasonic attenuation of pure tetrahydrofuran hydrate. Geophys. Prospect. 2018, 66, 1349–1357. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A. Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Hu, G.; Ye, Y.; Zhang, J.; Liu, C.; Diao, S.; Wang, J. Acoustic properties of gas hydrate-bearing consolidated sediments and experimental testing of elastic velocity models. J. Geophys. Res. Solid Earth 2010, 115, B2. [Google Scholar] [CrossRef]
- Bu, Q.; Hu, G.; Ye, Y.; Liu, C.; Li, C.; Wang, J. Experimental study on 2-D acoustic characteristics and hydrate distribution in sand. Geophys. J. Int. 2017, 211, 990–1004. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, W.; Xue, K.; Wei, R.; Ling, Z. A pressure core ultrasonic test system for on-board analysis of gas hydrate-bearing sediments under in situ pressures. Rev. Sci. Instrum. 2018, 89, 054904. [Google Scholar] [CrossRef]
- Song, Y.; Kuang, Y.; Fan, Z.; Zhao, Y.; Zhao, J. Influence of core scale permeability on gas production from methane hydrate by thermal stimulation. Int. J. Heat Mass Transf. 2018, 121, 207–214. [Google Scholar] [CrossRef]
- Kuang, Y.; Lei, X.; Yang, L.; Zhao, Y.; Zhao, J. Observation of in-situ growth and decomposition of Carbon dioxide hydrate at gas-water interfaces using MRI. Energy Fuels 2018, 32, 6964–6969. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L.; Chen, X.; Zhang, Y.; Liu, Y.; Song, Y. Combined replacement and depressurization methane hydrate recovery method. Energy Explor. Exploit. 2016, 34, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, V.; Bishnoi, P.R.; Kalogerakis, N. Induction phenomena in gas hydrate nucleation. Chem. Eng. Sci. 1994, 49, 2075–2087. [Google Scholar] [CrossRef]
- Toksöz, M.N.; Johnston, D.H.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: 1. Laboratory measurement. Geophysics 1979, 44, 681–690. [Google Scholar] [CrossRef]
- Johnston, D.H.; Toksöz, M.N.; Timur, A. Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. Geophysics 1979, 44, 691–711. [Google Scholar] [CrossRef]
- Jakobsen, M.; Hudson, J.A.; Minshull, T.A.; Singh, S.C. Elastic properties of hydrate-bearing sediments using effective-medium theory. J. Geophys. Res. Solid Earth 2000, 105, 561–577. [Google Scholar] [CrossRef]
- Gei, D.; Carcione, J.M. Acoustic properties of sediments saturated with gas hydrate, free gas and water. Geophys. Prospect. 2003, 51, 141–158. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom-simulating reflectors: Seismic velocities and AVO effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Estimating the amount of gas hydrate and free gas from marine seismic data. Geophysics 2000, 65, 565–573. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, W.P. Seismic velocities for hydrate-bearing sediments using weighted equation. J. Geophys. Res. Solid Earth 1996, 101, 20347–20358. [Google Scholar] [CrossRef]
- Priest, J.A.; Best, A.I.; Clayton, C.R.I. A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.; Sun, C.; Li, Q.; Wu, X.; Liu, B.; Chen, G. Compressional wave velocity measurements through sandy sediments containing methane hydrate. Am. Mineral. 2011, 96, 1425–1432. [Google Scholar] [CrossRef]
- Priest, J.A.; Rees, E.V.L.; Clayton, C.R.I. Influence of gas hydrate morphology on the seismic velocities of sands. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Liu, Y.; Liu, Y.; Zhang, W. Acoustic velocity and electrical resistance of hydrate bearing sediments. J. Pet. Sci. Eng. 2010, 70, 52–56. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A.M. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics 1998, 63, 1659–1669. [Google Scholar] [CrossRef]
- Kleinberg, R.L.; Dai, J. Estimation of the mechanical properties of natural gas hydrate deposits from petrophysical measurements. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2005. [Google Scholar]
- Guerin, G.; Goldberg, D.; Meltser, A. Characterization of in situ elastic properties of gas hydrate-bearing sediments on the Blake Ridge. J. Geophys. Res. Solid Earth 1999, 104, 17781–17795. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Murray, D.R.; Fukuhara, M.; Osawa, O.; Endo, T.; Kleinberg, R.L.; Sinha, B.K.; Namikawa, T. Saturation, acoustic properties, growth habit, and state of stress of a gas hydrate reservoir from well logs. Petrophysics 2006, 47, 129–137. [Google Scholar]
Case | ||||||
---|---|---|---|---|---|---|
Standard | - | - | 195,843 | - | - | 6320 |
Blank | 0 | 0 | 42,684 ± 116 | 2.54 ± 0.15 | 1.007 ± 0.005 | 1793 ± 15 |
1 | 7 | 2 | 43,562 ± 189 | 3.04 ± 0.20 | 1.326 ± 0.010 | 2023 ± 11 |
2 | 28 | 8 | 42,090 ± 223 | 3.15 ± 0.26 | 1.488 ± 0.018 | 2183 ± 33 |
3 | 53 | 15 | 39,738 ± 158 | 3.30 ± 0.24 | 1.464 ± 0.028 | 2277 ± 27 |
4 | 70 | 20 | 39,596 ± 175 | 3.34 ± 0.26 | 1.636 ± 0.020 | 2477 ± 19 |
5 | 105 | 30 | 42,399 ± 195 | 3.55 ± 0.28 | 1.863 ± 0.040 | 2552 ± 44 |
6 | 140 | 40 | 43,111 ± 145 | 3.76 ± 0.36 | 2.210 ± 0.017 | 2836 ± 32 |
7 | 175 | 50 | 42,090 ± 197 | 4.00 ± 0.45 | 2.241 ± 0.023 | 3047 ± 42 |
8 | 210 | 60 | 42,826 ± 134 | 4.25 ± 0.54 | 2.603 ± 0.036 | 3114 ± 53 |
Case | (mol) | |||||
---|---|---|---|---|---|---|
Standard | - | - | 195,843 | - | - | 6320 |
Blank | 0 | 0 | 75,801 ± 116 | 1.40 ± 0.13 | 1.811 ± 0.015 | 1807 ± 9 |
9 | 0.130 | 4 | 69,982 ± 189 | 1.84 ± 0.20 | 2.446 ± 0.013 | 1813 ± 13 |
10 | 0.259 | 8 | 66,508 ± 223 | 2.01 ± 0.21 | 2.737 ± 0.041 | 1857 ± 23 |
11 | 0.324 | 10 | 69,804 ± 158 | 1.95 ± 0.26 | 2.991 ± 0.035 | 1886 ± 36 |
12 | 0.486 | 15 | 67,785 ± 175 | 2.11 ± 0.28 | 3.291 ± 0.025 | 1945 ± 24 |
13 | 0.648 | 20 | 63,747 ± 195 | 2.18 ± 0.25 | 3.607 ± 0.062 | 2152 ± 46 |
14 | 0.810 | 25 | 66,865 ± 145 | 2.35 ± 0.35 | 4.248 ± 0.048 | 2362 ± 18 |
15 | 0.972 | 30 | 65,558 ± 197 | 2.26 ± 0.30 | 4.852 ± 0.067 | 2488 ± 25 |
16 | 1.296 | 40 | 63,569 ± 134 | 2.45 ± 0.34 | 5.269 ± 0.090 | 2669 ± 37 |
Parameter | Value |
---|---|
Critical porosity | 0.35 |
Quartz bulk modulus | 36 GPa |
Quartz shear modulus | 45 GPa |
Quartz density | 2580 kg m−3 |
Hydrate bulk modulus | 7.7 GPa |
Hydrate shear modulus | 3.2 GPa |
Hydrate density | 910 kg m−3 |
Water bulk modulus | 2.3 GPa |
Water density | 1030 kg m−3 |
Gas bulk modulus | 0.1 GPa |
Gas density | 230 kg m−3 |
Viscosity of water | 2.04 × 10−3 Pa s |
Viscosity of gas | 1.34 × 10−3 Pa s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, Y.; Zhang, H.; Xiao, B.; Lv, X.; Yao, H.; Pang, W.; Li, Q.; Yang, L.; Song, Y.; et al. Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies 2019, 12, 1997. https://doi.org/10.3390/en12101997
Li X, Liu Y, Zhang H, Xiao B, Lv X, Yao H, Pang W, Li Q, Yang L, Song Y, et al. Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies. 2019; 12(10):1997. https://doi.org/10.3390/en12101997
Chicago/Turabian StyleLi, Xingbo, Yu Liu, Hanquan Zhang, Bo Xiao, Xin Lv, Haiyuan Yao, Weixin Pang, Qingping Li, Lei Yang, Yongchen Song, and et al. 2019. "Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments" Energies 12, no. 10: 1997. https://doi.org/10.3390/en12101997
APA StyleLi, X., Liu, Y., Zhang, H., Xiao, B., Lv, X., Yao, H., Pang, W., Li, Q., Yang, L., Song, Y., & Zhao, J. (2019). Non-Embedded Ultrasonic Detection for Pressure Cores of Natural Methane Hydrate-Bearing Sediments. Energies, 12(10), 1997. https://doi.org/10.3390/en12101997